Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 191-198    DOI: 10.11902/1005.4537.2019.227
  研究报告 本期目录 | 过刊浏览 |
含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究
郑艳欣1, 刘颖1, 宋青松1, 郑峰1, 贾玉川2, 韩培德1()
1 太原理工大学材料科学与工程学院 太原 030024
2 洛阳鹏飞耐磨材料股份有限公司 洛阳 471200
High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe
ZHENG Yanxin1, LIU Ying1, SONG Qingsong1, ZHENG Feng1, JIA Yuchuan2, HAN Peide1()
1 College of Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
2 Luoyang Pengfei Abrasion Resistant Material Company Limited, Luoyang 471200, China
全文: PDF(11381 KB)   HTML
摘要: 

在25,250,350和450 ℃高温摩擦磨损实验条件下,对两种不同铁含量的Cu基摩擦材料进行高温氧化行为及耐磨性研究。结果表明:Fe在Cu基体中的尺寸、分布影响Cu基摩擦材料的高温抗氧化性和耐磨性,随实验温度升高,Cu基摩擦材料试样中Cu氧化产物为Cu2O,Fe从Fe2O3转变为Fe3O4,金属氧化膜厚度逐渐增加;Fe以小尺寸、均匀分布于Cu基体时,更有利于提高Cu基体整体的抗氧化性能,在350~450 ℃可形成稳定的氧化膜降低粘着磨损,展现出了较好的高温耐磨性能;而Fe以较大尺寸分布在Cu基体中时,则使Cu基体出现氧化不均匀现象,不利于高温耐磨性能的提高。

关键词 Cu基摩擦材料Fe高温氧化高温耐磨性    
Abstract

Composites of Cu matrix with reinforcers of graphite, ZrSiO4 and Fe were prepared via powder metallurgy, then their high temperature oxidation behavior and wear performance were assessed in air at 25, 250, 350 and 450 ℃. The results show that the size and distribution of Fe particles in Cu-matrix affect the oxidation resistance and wear resistance of Cu-based friction materials. With the increasing temperature, the formed oxidation product of Cu on the surface of copper-based friction materials is Cu2O, but that of Fe changed from Fe2O3 to Fe3O4, and the thickness of oxide scale increased gradually. When Fe particles of small size distribute uniformly in the Cu-matrix, it is more conducive to improving the overall oxidation resistance of the Cu-matrix, in the range of 350~450 ℃, the formation of stable oxide scale was beneficial to reduce the adhesive wear, demonstrating better high-temperature wear resistance. However, when the Fe particles in the Cu-matrix were of large size, the phenomenon of heterogeneous oxidation can be observed, which is not conducive to improving the high-temperature wear resistance.

Key wordsCu-based friction material    Fe    high-temperature oxidation    high-temperature wear resistance
收稿日期: 2019-04-26     
ZTFLH:  TF124  
基金资助:国家自然科学基金(U1860204);国家自然科学基金(51871159);河南省科技开放合作项目(182106000014)
通讯作者: 韩培德     E-mail: hanpeide@126.com
Corresponding author: HAN Peide     E-mail: hanpeide@126.com
作者简介: 郑艳欣,女,1993年生,硕士生

引用本文:

郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
Yanxin ZHENG, Ying LIU, Qingsong SONG, Feng ZHENG, Yuchuan JIA, Peide HAN. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 191-198.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.227      或      https://www.jcscp.org/CN/Y2020/V40/I2/191

ComponentsCu-matrixFeCZrSiO4Others
Sample 160~7010~124~812~153~7
Sample 265~757~103~613~153~7
表1  Cu基摩擦材料成分 (mass fraction / %)
图1  试样1和试样2的光学显微组织及组成相EDS分析
图2  不同温度下试样1和试样2未磨损处微观形貌
图3  不同温度下试样1和试样2的SEM形貌及EDS元素分析
图4  高温磨擦前、后试样表面XRD谱
图5  试样1和2的高温氧化示意图
图6  不同温度下试样的摩擦系数和磨损率
图7  试样1和试样2不同温度下试样磨损表面
图8  试样1和试样2不同温度下试样磨损表面三维图
[1] Wang W H, Xiao K, Zheng D. Investigation on Cu-based ceramic-metal friction material used in heavy loading conditions [J]. Powder Metall. Technol., 2007, 25(5): 344
[1] (王文辉, 肖凯, 郑聃. 新型重负荷铜基金属陶瓷摩擦材料的研究 [J]. 粉末冶金技术, 2007, 25(5): 344)
[2] Österle W, Prietzel C, Kloß H, et al. On the role of copper in brake friction materials [J]. Tribol. Int., 2010, 43(12): 2317
[3] Peter I, Rosso M. Study and optimization of metal based sintered materials for automotive brake friction production [J]. Solid State Phenom., 2016, 254: 20
[4] Wang X F, Yin C L. Application situations of powder metallurgy friction materials and requests of raw materials [J]. Powder Metall. Ind., 2017, 27(3): 1
[4] (王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求 [J]. 粉末冶金工业, 2017, 27(3): 1)
[5] Blau P J. Elevated-temperature tribology of metallic materials [J]. Tribol. Int., 2010, 43(7): 1203
[6] Liu J X, Guo Y Q, Han C S, et al. Study of high temperature fatigue wear of copper powder metallurgy (Cu-PM) friction material [J]. Lubricat. Eng., 2004, (3): 1
[6] (刘建秀, 郭炎强, 韩长生等. 铜基粉末冶金摩擦材料高温疲劳磨损规律 [J]. 润滑与密封, 2004, (3): 1)
[7] Yin Y G, Zheng Z X, Ma S B, et al. Influence of temperature on friction and wear properties of Cu-matrix/graphite self-lubricating composite materials [J]. Chin. J. Nonferrous Met., 2004, 14(11): 1856
[7] (尹延国, 郑治祥, 马少波等. 温度对铜基自润滑材料减摩耐磨特性的影响 [J]. 中国有色金属学报, 2004, 14(11): 1856)
[8] Zhong Z G, Deng H J, Li M, et al. Effects of Fe content on friction and wear properties of Cu-Ceramet friction materials [J]. J. Mater. Eng., 2002, (8): 17
[8] (钟志刚, 邓海金, 李明等. Fe含量对Cu基金属陶瓷摩擦材料摩擦磨损性能的影响 [J]. 材料工程, 2002, (8): 17)
[9] Yao P P, Xiong X, Li S P, et al. Friction and wear behavior and mechanism of Fe and SiO2 in Cu-based P/M friction material [J]. Tribology, 2006, 26(5): 478
[9] (姚萍屏, 熊翔, 李世鹏等. Fe及SiO2对铜基刹车材料摩擦磨损性能的影响机制 [J]. 摩擦学学报, 2006, 26(5): 478)
[10] Yu X, Guo Z M, Yang J, et al. Effect of Fe content and friction components on properties of copper-based powder metallurgy friction material [J]. Powder Metall. Technol., 2014, 32(1): 43
[10] (于潇, 郭志猛, 杨剑等. Fe含量及摩擦组元对铜基粉末冶金摩擦材料性能的影响 [J]. 粉末冶金技术, 2014, 32(1): 43)
[11] Jaafar T R, Selamat M A, Rusila Z J, et al. Friction and wear characteristics of Cu-based P/M brake friction materials with addition of Fe and C [J]. Appl. Mech. Mater., 2014, 661: 21
[12] Liu Y C, Schissler J M, Mathia T G. The influence of surface oxidation on the wear resistance of cast iron [J]. Tribol. Int., 1995, 28(7): 433
[13] Qiu M, Zhang Y Z. Effect of different atmospheres on dry friction behavior of steel sliding against brass at high speed [J]. Chin. Sci. Bull., 2009, 54(24): 4589
[14] Wang Z T, Meng J S. Frictional Wear and Wear Resistant Materials [M]. Harbin: Harbin Institute of Technology Press, 2013
[14] (王振廷, 孟君晟. 摩擦磨损与耐磨材料 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2013)
[15] Fan Z Y, Ye Y P, Wang Y, et al. Effect of iron powder particle size on brake friction performance of powder metallurgy materials [J]. Powder Metall. Ind., 2016, 26(3): 28
[15] (樊子源, 叶亚平, 王晔等. 铁粉粒度对粉末冶金材料制动摩擦性能的影响 [J]. 粉末冶金工业, 2016, 26(3): 28)
[16] Xiong D S, Li X B. Oxidation wear and oxide lubrication [J]. Mater. Sci. Eng. Powder Metall., 1996, 1(1): 49
[16] (熊党生, 李溪滨. 氧化磨损与氧化物润滑 [J]. 粉末冶金材料科学与工程, 1996, 1(1): 49)
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[4] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[8] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[10] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[11] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[12] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[13] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[14] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[15] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.