Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 360-365    DOI: 10.11902/1005.4537.2016.097
  研究报告 本期目录 | 过刊浏览 |
柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响
冯立1(), 张立功1, 李思振1, 郑大江2(), 林昌健3, 董士刚4
1 中国空间技术研究院 北京卫星制造厂 北京 100190
2 厦门大学材料学院 厦门 361005
3 厦门大学化学化工学院 厦门 361005
4 厦门大学能源学院 能源研究院 厦门 361005
Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M
Li FENG1(), Ligong ZHANG1, Sizhen LI1, Dajiang ZHENG2(), Changjian LIN3, Shigang DONG4
1 Beijing Spacecrafts China Academy of Space Technology, Beijing 100190, China
2 College of Materials, Xiamen University, Xiamen 361005, China
3 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
4 College of Energy, and School of Energy Research, Xiamen University, Xiamen 361005, China
全文: PDF(3254 KB)   HTML
摘要: 

利用二次微弧氧化法在AZ40M镁合金表面成功制备了黑色的氧化膜层,通过SEM、EDS和XRD表征了膜层的微观形貌和成分组成。结果表明,柠檬酸铁添加剂浓度可显著影响镁合金表面氧化膜的形貌、组成和厚度,添加剂浓度越高,膜层中的铁氧化物含量也越高,而对膜层厚度的影响则没有呈现出明显规律。同时,测试了0.1 mol/L NaCl溶液中的电化学阻抗谱和动电位极化曲线,结果显示镁合金表面黑色膜层具有较好的耐蚀性,且膜层越厚,铁含量越少,膜层的耐蚀性越好。

关键词 镁合金微弧氧化黑色氧化膜腐蚀电化学阻抗谱    
Abstract

Black oxide films on Mg-alloy AZ40M were prepared by means of a two-step micro-arc oxidation process in electrolytes of 15 g/L Na3PO4+ 3 g/L NaF+5.6 g/L KOH and 20 g/L Na3PO4+5 g/L NaF with different additions of ferric citrate respectively. The microstructure and composition of the films were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-Ray diffractometer (XRD). The electrochemical corrosion property of the films was assessed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves in 0.1 mol/L NaCl solution. Results showed that the concentration of ferric citrate strongly affects the surface morphology, composition and thickness of the formed oxide films. The oxide films have good corrosion resistance. The thicker oxide film with less iron content presents better corrosion resistance.

Key wordsmagnesium alloy    micro-arc oxidation    black oxide film layer    corrosion    electrochemicalimpedance spectroscopy
收稿日期: 2016-07-13     
ZTFLH:  TG146  
基金资助:国家自然科学基金 (21321062)
作者简介:

作者简介 冯立,男,1984年生,硕士,工程师

引用本文:

冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 360-365.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.097      或      https://www.jcscp.org/CN/Y2017/V37/I4/360

图1  不同柠檬酸铁浓度中制备的膜层宏观形貌照片
图2  在不同浓度柠檬酸铁电解液中微弧氧化制备得到的膜层的平均厚度
图3  AZ40M镁合金表面SEM像
图4  镁合金和经不同电解液中微弧氧化制备膜层后的XRD谱
图5  含不同浓度柠檬酸铁的电解液中制备的膜层表面形貌SEM像
Concentration of ferric citrate C O Na Mg Al P Fe
C1: 5 g/L 5.58 55.80 2.27 19.44 0.69 14.07 2.15
C2: 10 g/L 7.78 57.54 1.47 21.49 0.60 8.16 2.96
C3: 15 g/L 6.49 55.13 2.77 20.51 0.71 10.83 3.57
C4: 20 g/L 14.62 39.77 2.21 17.24 0.58 14.14 11.44
表1  不同柠檬酸铁浓度的电解液中制备的膜层的元素组成
图6  经不同浓度柠檬酸铁电解液中微弧氧化处理过的镁合金样品在0.1 mol/L NaCl溶液中浸泡20 min后的电化学阻抗谱
图7  经不同浓度柠檬酸铁电解液中微弧氧化处理过的镁合金样品在0.1 mol/L NaCl溶液中浸泡30 min后的动电位极化曲线
Sample I / μAcm-2 Rp / kΩcm2 Ecorr / V
Mg alloy 17.7 3.98 -1.464
C1 0.89 70.9 -1.702
C2 0.15 449 -1.569
C3 0.57 267 -1.528
C4 0.26 203 -1.531
表2  图7中极化曲线相对应的Tafel拟合参数
[1] Kulekci M K.Magnesium and its alloys applications in automotive industry[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 851
[2] Liu W L, Wang S Q.Application and development of magnesium alloy[J]. Intelligence, 2011, (27): 250(刘文龙, 王淑琴. 镁合金应用及发展论述[J]. 才智, 2011, (27): 250)
[3] Zhang Y F.Prospects analysis on the development of magnesium alloy applications in our country[J]. New Technol. New Prod. China, 2010, (9): 106(张运法. 我国镁合金应用领域开发前景分析[J]. 中国新技术新产品, 2010, (9): 106)
[4] Wang Z T, Li Y G.Evaluation of European Union on the application of wrought magnesium alloy for aerospace vehicle[J]. Aluminium Fabrication, 2010, (5): 8(王祝堂, 李永革. 欧盟对航空航天器变形镁合金应用的评估[J]. 铝加工, 2010, (5): 8)
[5] Ding W J, Wu Y J, Peng L M, et al.Research and application development of advanced magnesium alloys[J]. Mater. China, 2010, 29(8): 37(丁文江, 吴玉娟, 彭立明等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37)
[6] Song G L, Atrens A.Corrosion mechanisms of magnesium alloys[J]. Adv. Eng. Mater., 1999, 1: 11
[7] Xu W J, Ma Y, Lv W L, et al.Effect factors of corrosion behaviors of magnesium alloys[J]. Corros. Prot., 2007, 28: 163(徐卫军, 马颖, 吕维玲等. 镁合金腐蚀的影响因素[J]. 腐蚀与防护, 2007, 28: 163)
[8] Guo G W, Su T J, Tan C W, et al.Advances in research on corrosion and protection of magnesium alloys[J]. New. Technol. New Process, 2007, (9): 69(郭冠伟, 苏铁健, 谭成文等. 镁合金腐蚀与防护研究现状及进展[J]. 新技术新工艺, 2007, (9): 69)
[9] Wang W Q, Pan F S, Zuo R L.Recent development on corrosion and protective measures of magnesium alloys[J]. Ordn. Mater. Sci. Eng., 2006, 29(2): 73(王维青, 潘复生, 左汝林. 镁合金腐蚀及防护研究新进展[J]. 兵器材料科学与工程, 2006, 29(2): 73)
[10] Gong P, Cao X J, Ning S Q, et al.Influence of different environments on atmospheric corrosion of AZ61 magnesium alloy[J]. Chin. Surf. Eng., 2015, 28(5): 123(龚沛, 曹学军, 宁韶奇等. 不同环境对AZ61镁合金大气腐蚀的影响[J]. 中国表面工程, 2015, 28(5): 123)
[11] Li S S, Ma J, Jia P P, et al.Abrasive resistance and corrosion resistance of tungsten coating prepared on AZ31 magnesium alloy by chemical vapor deposition[J]. Chin. Surf. Eng., 2014, 27(1): 40(李思思, 马捷, 贾平平等. AZ31镁合金表面化学气相沉积钨涂层工艺及其耐蚀性和耐磨性[J]. 中国表面工程, 2014, 27(1): 40)
[12] Gray J E, Luan B.Protective coatings on magnesium and its alloys-a critical review[J]. J. Alloy. Compd., 2002, 336: 88
[13] Krz?ka?a A, Kazek-K?sik A, Simka W.Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys[J]. RSC Adv., 2013, 3: 19725
[14] Song W H, Jun Y K, Han Y, et al.Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004, 25: 3341
[15] Chen L, Han J, Yu S X.Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys[J]. Rare Met., 2006, 25: 146
[16] Huo Z Z, Guo F, Liu L, et al.Coloring mechanism of micro-arc oxidation ceramic black coating on aluminum alloy[J]. Trans. Mater. Heat Treat., 2014, 35: 158(霍珍珍, 郭锋, 刘亮等. 铝合金微弧氧化黑色陶瓷膜着色机理[J]. 材料热处理学报, 2014, 35: 158)
[17] Zhang W F, Hu Z Q, Ma J, et al.Study on micro arc oxidation coloring of hard aluminium alloy surface[J]. Plat. Finish., 2009, 31: 9(张文凡, 胡正前, 马晋等. 硬铝合金表面微弧氧化着色工艺研究[J]. 电镀与精饰, 2009, 31: 9)
[18] Hao C W, Hu Z Q, Ma J, et al.Micro-arc oxidation coloring processing of LY12 aluminum alloy in Na2SiO3 electrolyte[J]. Packag. World, 2008, (4): 30(邝春伟, 胡正前, 马晋等. LY12铝合金在Na2SiO3电解液中微弧氧化着色处理研究[J]. 包装世界, 2008, (4): 30)
[19] Liu Y, Liu S M, Yu L P, et al.Summary on corrosion behavior and micro-arc oxidation for magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99(刘胤, 刘时美, 于鲁萍等. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35: 99)
[20] Walsh F C, Low C T J, Wood R J K, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys[J]. Trans. Inst. Metal Finish., 2009, 87: 122
[21] Duan H P, Du K Q, Yan C W, et al.Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochim. Acta, 2006, 51: 2898
[22] Ma Y, Zhan H, Ma Y Z, et al.Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20: 1467(马颖, 詹华, 马跃洲等. 电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20: 1467)
[23] Gu Y H, Cai X J, Ning C Y, et al.Effects of voltage on the microstructure and corrosion performance of microarc oxidation coated AZ31 magnesium alloys[J]. Chin. Surf. Eng., 2012, 25(6): 21(顾艳红, 蔡晓君, 宁成云等. 电压对AZ31镁合金微弧氧化涂层微观结构及腐蚀性能的影响[J]. 中国表面工程, 2012, 25(6): 21)
[24] Cui X J, Li X F, Li T, et al.Negative voltage on structure and corrosion resistance of micro-arc oxidation coating on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 137(崔学军, 李晓飞, 李特等. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36: 137)
[25] Wang S Y, Xia Y P, Liu L.Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 235(王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33: 235)
[26] Li S Z, Bai J Y, Feng L, et al.Research on micro-arc oxidation coatings with thermal control on magnesium alloy [A]. Han C. International Federation for Heat Treatment and Surface Engineering[M]. Amsterdam: Elsevier, 2013
[27] Xiong W, Wang J.Preparation and study on the coloring coating by micro-arc oxidation on magnesium alloy[J]. Sci. Technol. Inform., 2012, (26): 244(熊伟, 王军. 镁合金微弧氧化着色膜层的制备与研究[J]. 科技信息, 2012, (26): 244)
[28] Chen X M, Luo C P, Liu J W.Study on the coloring coating by micro-arc oxidation on magnesium alloy[J]. Mater. Rev., 2009, 23: 535(陈显明, 罗承萍, 刘江文. 镁合金微弧氧化着色膜研究[J]. 材料导报, 2009, 23: 535)
[29] Bai J Y, Li S Z, Zheng D J, et al.Preparation and characterization of black micro-arc oxidation film[J]. Acta Phys.-Chim. Sin., 2016, 32: 2271(白晶莹, 李思振, 郑大江等. 黑色微弧氧化膜的制备及其表征[J]. 物理化学学报, 2016, 32: 2271)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[6] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[8] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.