Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 624-630    DOI: 10.11902/1005.4537.2016.122
  研究报告 本期目录 | 过刊浏览 |
某核电站凝汽器在海水中阴极保护参数的研究及应用
王廷勇1(),马兰英2,汪相辰1,张海兵3,陈凯1,闫永贵3
1. 青岛双瑞海洋环境工程股份有限公司 青岛 266101
2. 中油管道物资装备有限公司 廊坊 065000
3. 中船重工第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266101
Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater
Tingyong WANG1(),Lanying MA2,Xiangchen WANG1,Haibing ZHANG3,Kai CHEN1,Yonggui YAN3
1. Sunrui Marine Environment Engineering Co., Ltd, Qingdao 266101, China
2. China Petroleum Pipeline Material & Equipment Company Limited, Langfang 065000, China;
3. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, CSIC, Qingdao 266101, China
全文: PDF(1263 KB)   HTML
摘要: 

研究了引进凝汽器钛管、国产凝汽器用工业纯钛TA2和316L不锈钢在海水中的阴极电化学行为。通过慢应变速率拉伸实验和断口显微形貌分析,研究了钛管在不同阴极极化电位下的氢脆敏感性,进而获得凝汽器在海水中合理的阴极保护电位参数。结果表明,316L不锈钢/钛结构的凝汽器在海水中会发生电偶腐蚀,造成不锈钢的腐蚀加速;为了降低产生氢脆的风险,钛管在海水中的电位不宜负于-0.7 V,在对凝汽器实施阴极保护时,电位最好维持在-0.50~-0.65 V之间 (vs Ag/AgCl电极)。据此对凝汽器进行了阴极保护设计,选用铁锰合金阳极对凝汽器进行保护,不仅能满足不锈钢的保护电位要求,取得了良好的保护效果,而且保障了设备长期运行的安全性和经济性。

关键词 凝汽器腐蚀阴极保护氢脆电位    
Abstract

The electrochemical performance of domestic Ti-alloy TA2, an imported Ti-alloy condenser tube and 316L stainless steel were studied comparatively in seawater by means of electrochemical measurements and slow strain rate method with emphasis on the effect of different polarization potentials on hydrogen embrittlement and the evolution characters of microstructure of the alloys, so that the reasonable protection potential range for condenser in seawater was obtained. The results revealed that galvanic corrosion occurred for the couple of 316L/Ti in seawater, which accelerated the corrosion of 316L stainless steel. When cathodic protection is applied to the above couple, the potential of Ti should be better maintained within a range of -0.50~-0.65 V (vs Ag/AgCl). Based on the above results, the cathodic protection design was conducted for the desired condenser, for which FeMn alloy were proposed as anodes to protect the condenser and worked effectively to ensure the long-term and safe operation.

Key wordscondenser    corrosion    cathodic protection    hydrogen embrittlement    potential
    

引用本文:

王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
Tingyong WANG, Lanying MA, Xiangchen WANG, Haibing ZHANG, Kai CHEN, Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 624-630.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.122      或      https://www.jcscp.org/CN/Y2016/V36/I6/624

图1  拉伸实验用钛管试样
图2  钛管, 国产纯钛 TA2和316L不锈钢试样在海水中的极化曲线
Sample EmV IAcm-2 Hydrogen evolutionpotential / V
Foreign titanium tube -170 5.70×10-8 -0.70
Domestic TA2 -189 4.48×10-8 -0.70
316L steel -224 1.38×10-7 -0.85
表1  3种实验材料的腐蚀电化学参数
图3  不同极化条件下钛管试样的应力-应变曲线
Conditon Tensile strengthMPa Fracture strengthMPa Elongation
%
Reduction of area % Hydrogen embrittlement coefficient / %
In air 378.19 210.23 27.33 51.71 ---
Ecorr 387.13 274.96 26.40 48.07 7.05
-0.55 V 379.95 268.93 25.81 45.56 11.90
-0.60 V 388.14 271.20 25.48 43.67 15.55
-0.65 V 381.45 307.21 25.54 42.57 17.68
-0.70 V 372.52 277.14 24.16 38.79 24.99
-0.75 V 386.34 347.51 24.58 36.09 30.20
-0.80 V 374.93 241.88 23.68 34.05 34.16
-0.85 V 382.24 253.79 22.82 33.25 35.69
-0.90 V 382.24 265.24 21.61 33.79 34.66
表2  钛管试样的力学性能
图4  钛管试样在不同极化条件下的氢脆系数
图5  钛管试样在不同极化电位下的断口显微形貌
图6  不同温度下钛合金的阴极电流随时间变化曲线
图7  凝汽器水室内壁表面腐蚀形貌
Seawater chamber Left surface
potential / V
Right surface potential / V Stretching bar
potential / V
1# inlet -0.57 -0.57 -0.55
1# outlet -0.58 -0.59 -0.55
2# inlet -0.64 -0.64 -0.50
2# outlet -0.45 -0.50 -0.51
表3  海水中凝汽器水室的保护电位
图8  采用铁锰合金阳极保护的凝汽器水室
[1] Wang Y Y.Corrosion and Anti-corrosion Control of Seawater Cooling System [M]. Beijing: Chemistry Industry Press, 2006
[1] (王曰义. 海水冷却水系统的腐蚀及其控制 [M]. 北京: 化学工业出版社, 2006)
[2] Gurrappa I.Cathodic protection of cooling water systems and selection of appropriate materials[J]. J. Mater. Process. Technol., 2005, 166(8): 256
[3] Shalaby H M.Failure investigation of Muntz tube sheet and Ti tubes of surface condenser[J]. Eng. Fail. Anal., 2006, 13(5): 780
[4] Meng C, Tian J J, Pang Q W.Cathodic protection technology in the application of coastal power plant condenser anticorrosion[J]. Corros. Sci. Technol. Prot., 2001, 13(s1): 137
[4] (孟超, 田俊杰, 庞其伟. 阴极保护技术在滨海电厂凝汽器防腐上的应用[J]. 腐蚀科学与防护技术, 2001, 13(s1): 137)
[5] Wang L, Liu S, Han L H, et al.Rehabilitation and reconstruction of cathodic protection system of condenser for a nuclear power station[J]. Total Corros. Control, 2014, 28(11): 78
[5] (王磊, 刘爽, 韩留红等. 某核电站凝汽器CPS阴极保护系统的恢复与改造[J]. 全面腐蚀控制, 2014, 28(11): 78)
[6] Zhang X S.An investigation and application of cathodic protection for condenser in power plant[J]. Sci. Technol. Inf., 2010, (36): 96
[6] (张祥胜. 阴极保护防蚀技术在火力发电厂凝汽器上的应用及研究[J]. 科技资讯, 2010, (36): 96)
[7] Chen L J.An investigation and application of cathodic protection system for condenser in coastal power plant[J]. Power Stn. Auxiliary Equip., 2012, 33(3): 25
[7] (陈丽君. 滨海电厂凝汽器阴极保护系统的研究及应用[J]. 电站辅机, 2012, 33(3): 25)
[8] Xu C W, Zheng M C, Xu G X.An investigation and application of cathodic protection system for condenser used in 300 MW turbine-generator unit[J]. J. Wuhan Univ. Hydraul. Electr. Eng., 1999, 32(5): 82
[8] (许崇武, 郑敏聪, 许国新. 600MW机组凝汽器阴极保护系统的研究及应用[J]. 武汉水利电力大学学报, 1999, 32(5): 82)
[9] Qu Z, Zhang K Z, Sun B.Corrosion and protection of the condenser and conjoint pipeline used in seashore power plant[J]. Corros. Prot., 2005, 26(2): 72
[9] (曲政, 张奎志, 孙彬. 滨海电厂凝汽器及相连管道的腐蚀与防护[J]. 腐蚀与防护, 2005, 26(2): 72)
[10] Zhang P, Su L H, Wang G.The effect of cooling water temperature on cathodic protection potential of condenser used in the coastal power plant[J]. Corros. Prot. Petrochem. Ind., 2015, 32(5): 5
[10] (张鹏, 苏林海, 王贵. 冷却水温度对滨海电厂凝汽器水室阴极保护电位的影响[J]. 石油化工腐蚀与防护, 2015, 32(5): 5)
[11] Li Z, Zhou L J, Xu H L.Application analysis of anti-corrosion techniques of condenser for coastal nuclear power plant[J]. Power Stn. Auxiliary Equip., 2012, 33(3): 19
[11] (李振, 周李军, 许海伦. 滨海核电站凝汽器防腐技术的应用分析[J]. 电站辅机, 2012, 33(3): 19)
[12] Wang C M, Wang Y N, Gao Y Z, et al.Corrosion analysis and impressed current cathodic protection of tube sheets of condenser in nuclear power plant[J]. Total Corros. Control, 2012, 26(1): 44
[12] (王成铭, 王永年, 高玉柱等. 核电站凝汽器管板的腐蚀分析及外加电流阴极保护[J]. 全面腐蚀控制, 2012, 26(1): 44)
[13] Hu X W, Huang J, Xu C W,et al.Impressed current cathodic protection system for condenser of 300 MW turbine-generator unit[J]. East China Electr. Power, 2001, 29(12): 46
[13] (胡学文, 黄杰, 许崇武等. 300MW机组凝汽器的外加电流阴极保护[J]. 华东电力, 2001, 29(12): 46)
[14] Liu Z Y, Yang J.Cathodic protection of seawater condenser water boxes[J]. Mater. Perform., 2013, 52(9): 32
[15] National marine and ship standardization technical committee SAC/TC 12, Sub committee SC 4, Ship material application technology. GB/T16166-2013. Sacrificial anode cathodic protection for seawatercooling system in coastal power station [S]. Beijing: China Standard Press, 2014
[15] (全国海洋船标准化技术委员会船用材料应用工艺分技术委员会 (SAC/TC 12/SC 4). GB/T16166—2013. 滨海电厂海水冷却水系统牺牲阳极阴极保护 [S]. 北京: 中国标准出版社, 2014)
[16] Technical Committee ISO/TC 67, Subcommittee SC 2, Pipeline transportation systems. ISO 15589-2:2004, Petroleum and natural gas industries—Cathodic protection of pipeline transportation systems —Part 2: Offshore pipelines, 2007
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[14] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.