Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 55-60    DOI: 10.11902/1005.4537.2014.202
  本期目录 | 过刊浏览 |
聚N-乙烯基咪唑对盐酸介质中Q235钢的缓蚀性能
丁其晨, 陈上()
吉首大学化学化工学院 吉首 416000
Corrosion Inhibition of Poly N-vinyl Imidazole for Q235 Steel in HCl Solution
DING Qichen, CHEN Shang()
College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
全文: PDF(1021 KB)   HTML
摘要: 

以N-乙烯基咪唑单体为原料,偶氮二异丁腈为引发剂,苯为溶剂,合成聚N-乙烯基咪唑 (PVI)。采用静态失重法、Tafel极化曲线以及电化学阻抗法研究不同温度和含量下PVI在HCl溶液中对Q235钢的缓蚀性能,并研究了其缓蚀机理及缓蚀剂吸附方式。结果表明:在298 K下,1 molL-1 HCl溶液中,缓蚀剂浓度为2 mgL-1时,缓蚀效率达到90.1%,在高温 (328 K),高酸 (2 molL-1) 下的缓蚀率仍可达到84%以上。电化学测试结果表明,PVI属于混合型缓蚀剂,与金属的吸附符合Langmuir吸附等温关系式;吸附自由能结果表明,缓蚀剂具有强烈的在金属上吸附的倾向,主要以化学吸附方式为主。

关键词 聚N-乙烯基咪唑缓蚀剂Q235钢    
Abstract

Poly N-vinylimidazole (PVI) was synthesized using N-vinyl imidazole as monomer and azodiisobutyronitrile (AIBN) as initiator in a solvent of benzene. Its corrosion inhibition for Q235 carbon steel in HCl solution were investigated by means of mass loss method, Tafel polarization measurement and electrochemical impedance spectroscopy (EIS). Results indicate that inhibition efficiency of PVI can reach 90.1% in 1 molL-1 hydrochloride acid with 2 mgL-1 PVI at 298 K, and it can reach above 84% at high temperature (328 K) in solution of high acidity (2 molL-1). The electrochemical measurements suggest that PVI is a kind of mixed type inhibitor, the adsorption of PVI on the surface of metal obeys the Langmuir adsorption isotherm, free energies of adsorption calculated indicate that PVI exhibits strong tendency of adsorption on metal via chemical adsorption.

Key wordspoly N-vinyl imidazole    corrosive inhibitor    Q235 carbon steel
    
ZTFLH:  O626.1  
作者简介: null

丁其晨,男,1988年生,硕士生

引用本文:

丁其晨, 陈上. 聚N-乙烯基咪唑对盐酸介质中Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(1): 55-60.
Qichen DING, Shang CHEN. Corrosion Inhibition of Poly N-vinyl Imidazole for Q235 Steel in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 55-60.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.202      或      https://www.jcscp.org/CN/Y2015/V35/I1/55

图1  PVI的红外谱图
CHCI / molL-1 CPVI / mgL-1 η1 / %
0.5 0 ---
2 93.7
4 94.5
8 95.7
16 96.5
50 97.3
1.0 0 ---
2 90.1
4 90.5
8 92.0
16 93.3
50 94.2
2.0 0 ---
2 70.4
4 75.9
8 80.5
16 84.3
50 86.5
表1  298 K不同 PVI和盐酸溶液浓度条件下Q235碳钢的失重实验结果
图2  Q235钢在298 K含不同浓度PVI的1 molL-1盐酸溶液中的Tafel极化曲线
CPVI
mgL-1
Ecorr
mV
ΔEcorr
mV
Ιcorr
mAcm-2
βa
mV
βc
mV
η2
%
0 -476.2 --- 1.5930 49.59 47.37 ---
2 -446.2 30 0.1253 50.21 52.02 92.1
4 -438.6 37.6 0.1033 48.03 49.38 93.5
8 -424.3 51.9 0.0815 47.50 49.65 94.9
16 -417.5 58.7 0.0541 49.02 48.84 96.6
表2  Q235钢在298 K含不同浓度PVI 的1 molL-1盐酸溶液中极化曲线的拟合参数
图3  Q235钢在298 K含不同浓度PVI的1 molL-1盐酸溶液中的电化学阻抗谱
图4  Q235钢在298 K含不同浓度PVI的1 molL-1盐酸溶液中的等效电路图
CPVI
mgL-1
Rct
Ωcm2
Rs
Ωcm2
Cdl
μFcm-2
η3
%
0 34.8 1.058 302 ---
2 290.2 2.404 286 88.01
4 308.5 3.654 269 88.72
8 365.4 5.622 255 90.48
16 436.3 5.787 221 92.02
表3  Q235钢在298 K不同浓度PVI的1 molL-1盐酸溶液中电化学阻抗谱的拟合参数
图5  298 K含不同浓度PVI的1 molL-1盐酸溶液中Q235碳钢的Langmuir吸附等温线
Temperature / K θ (η1) / % ΔGads / kJmol-1 ΔHads / kJmol-1 ΔSads / Jmol-1K-1
298 93.3 -59.383 -23.56 120.3
308 91.2 -61.375 -23.55 122.8
318 88.3 -63.367 -23.55 125.2
328 85.5 -65.360 -23.54 127.5
表4  Q235钢在不同温度含8 mgL-1 PVI 的1 molL-1盐酸溶液中的吸附热力学参数
图6  不同腐蚀条件下Q235钢的表面形貌
[1] Chetouani A, Medjahed K, Sid-Lakhdar K E, et al. Poly (4-vinylpyridine-poly (3-oxideethylene) tosyle) as an inhibitor for iron in sulphuric acid at 80 ℃[J]. Corros. Sci., 2004, 46(10): 2421
[2] Jeyaprabha C, Sathiyanarayanan S, Phani K L N, et al. Polyaniline as corrosion inhibitor for iron in acid solutions[J]. Appl. Polym. Sci., 2006, 110(3): 2144
[3] Finsgar M, Fassbender S, Nicolini F, et al. Polyethyleneimine as corrosion inhibitor for ASTM 420 stainless steel in near neutral water[J]. Corros. Sci., 2009, 51(3): 526
[4] Tuken T, Tansug G, Yazici B, et al. Poly (N-methyl pyrrole) and its copolymer with pyrrole for mild steel protection[J]. Surf. Coat. Technol., 2007, 202(1): 146
[5] Wang D Y, Chen W, Mei P, et al. Performance of polyaspartic acid and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 470
[5] (王大勇, 陈武, 梅平等. 聚天冬氨酸及其衍生物的缓蚀剂性能和生物降解的性能[J]. 中国腐蚀与防护学报, 2012, 32(6): 470)
[6] Liu X H, Xin J, Ma W. Corrosion inhibitor of kelp extractive in acid solutions[J]. Corros. Sci. Prot. Technol., 2003, 15(3): 172
[6] (刘学虎, 辛剑, 马伟. 海带提取液作为酸洗缓蚀剂的研究[J]. 腐蚀科学与防护技术, 2003, 15(3): 172)
[7] Eletre A Y. Nature honey as corrosion inhibitor for metals and alloys I: Copper in neutral aqueous solution[J]. Corros. Sci., 1998, 40(11): 1845
[8] Eletre A Y, Bdallah M A. Nature honey as corrosion inhibitor for metals and alloys II: C-steel in high saline water[J]. Corros. Sci., 2000, 42(4): 731
[9] Pekel N, Ahiner N S, Güven O, et al. Synthesis and characterization of N-vinylimidazole-ethyl methacrylate copolymers and determination of monomer reactivity ratios[J]. Eur. Polym. J., 2001, 37(12): 2443
[10] Wang C, Jiang F, Wang F H. The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steel[J]. Corros. Sci., 2004, 46(1): 75
[11] Gu B S, Liu J H, Ji X C. Corrosion inhibition mechanism of cerium (III) for aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2006, 26(1): 53
[12] Peng T L, Man R L. Rare earth and silane as chromate replacers for corrosion protection on galvanized steel[J]. J. Rare Earths, 2009, 7(1): 159
[13] Cao C N. Corrosion Electrochemistry[M]. Beijing: Chemical Industry Press, 2004
[13] (曹楚南. 腐蚀电化学[M]. 北京: 化学工业出版社, 2004)
[14] Tang Y, Yang X, Yang W, et al. Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1, 3, 4-thiadiazole[J]. Corros. Sci., 2010, 52(1): 242
[15] Behpour M, Ghoreishi S M, Mohammadi N, et al. Investigation of some schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel[J]. Corros. Sci., 2010, 52(12): 4046
[16] Popova A, Christov M. Evaluation of impedance measurements on mild steel corrosion in acid media in the presence of heterocyclic compounds[J]. Corros. Sci., 2006, 48(10): 3208
[17] Gao H, Cao W J, Fang C P. Crack inhibition site and resistance of hydrogen induced cracking[J]. J. Chin. Soc. Corros. Prot., 1994, 14(1): 25
[17] (高桦, 曹卫杰, 方昌鹏. 氢致裂纹形成位置与氢致开裂抗力[J]. 中国腐蚀与防护学报, 1994, 14(1): 25)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[12] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.