Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 441-448    
  研究论文 本期目录 | 过刊浏览 |
含氧有机物与十二烷基苯磺酸钠复配物在3.5%NaCl饱和Ca(OH)2溶液中对钢筋的缓蚀与协同效应
冯丽娟1 赵康文2 唐 囡2 杨怀玉1 王福会1 上官帖2
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016;
2. 国网江西省电力科学研究院 南昌 330096
Inhibition and Synergistic Effect of Mixtures of Oxygen-containing Organic Compounds with Sodium Dodecyl Benzene Sulfate on Steel Rebar Corrosion in 3.5%NaCl Saturated Ca(OH)2 Solution
FENG Lijuan1, ZHAO Kangwen2, TANG Nan2, YANG Huaiyu1, WANG Fuhui1, SHANGGUAN Tie2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
全文: PDF(847 KB)  
摘要: 将3种含氧有机物 (山梨醇、葡萄糖和抗坏血酸) 分别与十二烷基苯磺酸钠 (SDBS) 进行复配,利用线性极化、动电位扫描和电化学阻抗技术,在3.5%NaCl (质量分数) 饱和Ca(OH)2溶液中研究了不同比例复配物对钢筋的缓蚀性能,基于量化计算结果和软硬酸碱理论 (HSAB),分析探讨了复配物对钢筋的缓蚀机理,以及化合物间的缓蚀协同效应。结果表明,碱性Cl-溶液中3种含氧化合物对钢筋的缓蚀性能依次为:山梨醇<葡萄糖<抗坏血酸,且缓蚀效率与化合物作为Lewis碱的硬度呈正相关性。与SDBS复配后均表现出一定的缓蚀协同效应,其中以山梨醇与SDBS复配后协同效应最好。
关键词 钢筋腐蚀缓蚀剂协同效应量化计算    
Abstract:The inhibition and synergistic effect of three kinds of oxygen-containing organic compounds (i.e. sorbitol, glucose and ascorbic acid) with sodium dodecyl benzene sulfate (SDBS) on the corrosion of steel rebar in 3.5% NaCl (mass fraction) saturated Ca(OH)2 solution were investigated using linear polarization, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Then the relevant mechanism of the corrosion inhibition and synergistic effect was discussed in terms of quantum chemical calculations and hard and soft acids and bases (HSAB) principle. The results indicated that the inhibition efficiency of the oxygen-containing compounds increased in the follow order: sorbitol<glucose<ascorbic acid, the highest inhibition efficiency of 96.9% was obtained for the inhibitor ascorbic acid, and had a positive correlation with their absolute hardness as Lewis bases in alkaline chloride solution. A significant synergistic effect appeared when three organic compounds mixed with SDBS in different portions, however, the synergistic effect of sorbitol with SDBS was the strongest.
Key wordssteel rebar corrosion    corrosion inhibitor    synergistic effect    quantum chemical
calculation
收稿日期: 2013-03-12     
ZTFLH:  TQ172  
基金资助:国家自然科学基金项目 (51071161) 和输变电设备防腐材料开发及应用关键技术研究项目 (521820130014) 资助
通讯作者: 杨怀玉,E-mail:hyyang@imr.ac.cn   
作者简介: 冯丽娟,女,1983年生,博士,研究方向为材料腐蚀与防护

引用本文:

冯丽娟, 赵康文, 唐囡, 杨怀玉, 王福会, 上官帖. 含氧有机物与十二烷基苯磺酸钠复配物在3.5%NaCl饱和Ca(OH)2溶液中对钢筋的缓蚀与协同效应[J]. 中国腐蚀与防护学报, 2013, 33(6): 441-448.
FENG Lijuan, ZHAO Kangwen, TANG Nan, YANG Huaiyu, WANG Fuhui, SHANGGUAN Tie. Inhibition and Synergistic Effect of Mixtures of Oxygen-containing Organic Compounds with Sodium Dodecyl Benzene Sulfate on Steel Rebar Corrosion in 3.5%NaCl Saturated Ca(OH)2 Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 441-448.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/441

[1] Saravanan K, Sathiyanarayanan S, Muralidharan S, et al. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment [J]. Prog. Org. Coat., 2007, 59(2): 160-167
[2] Raupach M, Elsener B, Polder R, et al. Corrosion of Reinforcement in Concrete: Mechanisms, Monitoring,Inhibitors and Rehabilitation Techniques [M]. England, Cambridge: Woodhead Publishing Limited, 2007
[3] Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536-547
[4] Ormellese M, Lazzari L, Goidanich S, et al. A study of organic substances as inhibitors for chloride-induced corrosion in concrete [J]. Corros. Sci., 2009, 51: 2959-2968
[5] Jamil H E, Montemor M F, Boulif R, et al. An electrochemical and analytical approach to the inhibition mechanism of an amino-alcohol-based corrosion inhibitor for reinforced concrete [J]. Electrochim. Acta, 2003, 48: 3509-3518
[6] Wombacher F, Maeder U, Marazzani B. Aminoalcohol based mixed corrosion inhibitors [J]. Cem. Concr. Compos., 2004, 26: 209-216
[7] Martinez S, Valek L, Stipanovi? O I. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle [J]. J. Electrochem. Soc., 2007, 154(11): C671-C677
[8] Zhou X, Yang H Y, Wang F H. Corrosion inhibition by sorbitol/diethylenetriamine condensation product for carbon steel in 3.5%NaCl saturated Ca(OH)2 solution [J]. Acta Phys.-Chim. Sin., 2011, 27(3): 647-654
(周欣, 杨怀玉, 王福会. 3.5%NaCl饱和Ca(OH)2溶液中醇胺缩聚物对碳钢腐蚀的抑制 [J]. 物理化学学报, 2011, 27(3): 647-654)
[9] Zhou X, Yang H Y, Wang F H. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5%NaCl saturated Ca(OH)2 solution [J]. Corros. Sci., 2012, 54: 193-200
[10] Feng L J, Yang H Y, Wang F H. Inhibition behavior of ascorbic benzoate for steel rebar in alkaline solution [J]. Acta Chim. Sin., 2011, 69(20): 2359-2367
(冯丽娟, 杨怀玉, 王福会. 碱性溶液中苯甲酸抗坏血酸酯对钢筋的缓蚀行为 [J]. 化学学报, 2011, 69(20): 2359-2367)
[11] Feng L J,Yang H Y,Wang F H. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution [J]. Electrochim. Acta, 2011, 58: 427-436
[12] Yamaguchi M, Nishihara H, Aramaki K. The inhibition of passive film breakdown on iron in a borate buffer solution containing chloride ions by organic anion inhibitors [J]. Corros. Sci., 1994, 36(2): 241-258
[13] Machnikova E, Whitmire K H, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives [J]. Electrochim. Acta, 2008, 53: 6024-6032
[14] Garces P, Saura P, Mendez A, et al. Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores concrete in the propagation period [J]. Corros. Sci., 2008, 50(2): 498-509
[15] Valek L, Martinez S, Mikulic D, et al. The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions [J]. Corros. Sci., 2008, 50(9): 2705-2709
[16] Yamaguchi M, Nishihara H, Aramaki K. The inhibition of passive film breakdown on iron in a borate buffer solution containing chloride ions by organic anion inhibitors [J]. Corros. Sci., 1994, 36(2): 241-258
[17] Flis J, Zakroczymski T. Impedance study of reinforcing steel in simulated pore solution with tannin [J]. J. Electrochem. Soc., 1996, 143(8): 2458-2464
[18] Si Y J, Xiong Z P, Chen C G, et al. Inhibiting ability of sodium dodecyl benzene sulfunate to AZ31 magnesium alloy [J]. Rare Met. Mater. Eng., 2007, 36, 2244-2367
(司玉军, 熊中平, 陈昌国等. [J]. 稀有金属材料与工程, 2007, 36(12): 2244-2367)
[19] Wang W, Free M L. Prediction and measurement of corrosion inhibition of mild steel using nonionic surfactants in chloride media [J]. Corros. Sci., 2004, 46, 2601-2611
[20] Free M L. A new corrosion inhibition model for surfactants that more closely accounts for actual adsorption than traditional models that assume physical coverage is proportional to inhibition [J]. Corros. Sci., 2004, 46: 3101-3113
[21] Wang X M, Yang H Y, Wang F H. Inhibition performance of a gemini surfactant and its co-adsorption effect with halides on mild steel in 0.25 M H2SO4 solution [J]. Corros. Sci., 2012, 55: 145-152
[22] Ju H, Kai Z P, Li Y. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation [J]. Corros. Sci., 2008, 50(3): 865-871
[23] Pearson R G. The HSAB principle-more quantitative aspects [J]. Inorg. Chim. Acta, 1995, 240(1/2): 93-98
[24] Pearson R G. Hard and soft acids and bases (HSAB): Fundamental principles [J]. J. Chem. Edu., 1968, 45(9): 581-587
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[12] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[15] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.