Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 413-418    
  研究报告 本期目录 | 过刊浏览 |
划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究
孟凡江1,2, 王俭秋2, 韩恩厚2, 柯伟2
1. 上海核工程研究设计院 上海 200233; 2. 中国科学院金属研究所 沈阳 110016
Stress Corrosion Crack Initiation for Scratched Alloy 690TT in Oxygenated High Temperature Water
MENG Fanjiang1, WANG Jianqiu2, HAN En-Hou2, KE Wei2
1. Shanghai Nuclear Engineering Research and Design Institute,Shanghai,200233,China;
2. Institute of Metal Research,Chinese Academy of Sciences,Shenyang,110016,China
全文: PDF(5463 KB)  
摘要: 利用划伤技术研究了690TT合金在325 ℃高温含氧硼锂水中的裂纹萌生和生长情况。试样表面和截面显微分析的结果表明,划伤沟槽底部局部萌生了典型的沿晶应力腐蚀裂纹。由于应力集中,在慢速率拉伸阶段划伤沟槽底部产生了机械裂纹,而机械裂纹成为恒载过程中690TT合金沿晶应力腐蚀裂纹萌生和生长的先导。尖端非常接近晶界或者沿着晶界的机械裂纹可继续形成沿晶应力腐蚀裂纹。690TT合金在恒载荷条件下对应力腐蚀开裂仍有一定的敏感性。
关键词 690TT合金划伤应力腐蚀    
Abstract:The stress corrosion crack (SCC) initiation of Alloy 690TT was studied by using scratch technique in oxygenated water at 325 ℃. The SEM results show that intergranular stress corrosion cracks were initiated at the bottom of the scratch groove,and the relevant mechanism was discussed. Mechanical cracks which were produced during slow strain rate tensile stage and tips ofthem highly approached to or were along grain boundaries,could be the precursor for stress corrosion crack initiation and growth in the following constant loading stage. Therefore,Alloy 690TT is susceptible to stress corrosion cracking in high temperature oxygenated water.
Key wordsAlloy 690TT    scratch    SCC
    
ZTFLH:  TG172  

引用本文:

孟凡江, 王俭秋, 韩恩厚, 柯伟. 划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
MENG Fanjiang, WANG Jianqiu, HAN En-Hou, KE Wei. Stress Corrosion Crack Initiation for Scratched Alloy 690TT in Oxygenated High Temperature Water. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 413-418.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/413

[1] International Status and Prospects for Nuclear Power 2012. Board of Governors General Conference, IAEA. GOV/INF/2012/12-GC(56)/INF/6, 2012
[2] MacDonald P E, Shah V N, Ward L W, et al. Steam generator tube failures [R]. NUREG/CR-6365, 1996
[3] EPRI Report: TR-106863. Oconee 2 steam generator tube examination, 1997
[4] EPRI Report: TR-106484. Analysis of steam generator tubing from Oconee unit 1 nuclear station, 1997
[5] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: part 1 [J]. Corrosion, 2003, 59: 931-994
[6] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: part 3 [J]. Corrosion, 2004, 60: 115-180
[7] Meng F J, Wang J Q, Han E H, et al. Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 ℃ and 330 ℃ [J]. Corros. Sci., 2009, 51: 2761-2769
[8] Meng F J, Han E H, Wang J Q, et al. Localized corrosion behavior of scratches on nickel-base Alloy 690TT [J]. Electrochim. Acta, 2011, 56: 1781-1785
[9] Meng F J, Wang J Q, Han E H, et al. Microstructure near scratch on Alloy 690TT and stress corrosion induced by scratching [J]. Acta Metall. Sin., 2011, 47: 839-846
(孟凡江, 王俭秋, 韩恩厚等. 690TT合金划痕显微组织及划伤诱发的应力腐蚀 [J]. 金属学报, 2011, 47: 839-846)
[10] Andresen P L, Morra M M, Ahluwalia A, et al. Effect of deformation and orientation on SCC of Alloy 690 [A]. The 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]: Virginia Beach: August 23-27, 2009
[11] Lu Z P, Shoji T, Meng F J, et al. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water [J]. Corros. Sci., 2011, 53: 247-262
[12] Yamazaki S, Lu Z, Ito Y, et al. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water [J]. Corros. Sci., 2008, 50: 835-846
[13] EPRI Report: TR-105714-V2R4. PWR primary water chemistry guidelines, 1999
[14] Taunier S, Varry P, Tigeras A, et al. New primary shutdown and startup chemistry guidelines recently developed for EDF PWRs [A]. Proc. Int. Conf. Water Chem. Nuclear Reactors Syst. [C]. Berlin, 2008: L06-4
[15] Zhang Z M, Wang J Q, Han E H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623-3635
[16] Dan T C, Lv Z P, Wang J Q, et al. Crack growth behavior for stress corrosion cracking of 690 Alloy in high temperature water [J]. Acta Metall. Sin., 2010, 46: 1267-1274
(但体纯, 吕战鹏, 王俭秋等. 690合金在高温水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2010, 46: 1267-1274)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.