Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 388-394    
  研究报告 本期目录 | 过刊浏览 |
电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响
梅华生, 王长朋, 张帷, 周漪, 杨王玲
中国兵器工业第五九研究所 重庆 400039
Effect of Hydrogen Charging on Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Yingtan Soil Solution
MEI Huasheng, WANG Changpeng, ZHANG Wei, ZHOU Yi, YANG Yi, WANG Ling
No.59 Institute of China Ordnance Industry, Chongqing 400039, China
全文: PDF(8871 KB)  
摘要: 采用电化学技术、慢应变速率拉伸实验和扫描电镜(SEM)对电化学充氢后的X80管线钢在鹰潭土壤模拟溶液中的应力腐蚀行为进行了研究。结果表明:X80管线钢静态充氢后在鹰潭土壤模拟溶液中具有较高的应力腐蚀(SCC)敏感性,其断口模式为穿晶断裂;随着电化学充氢时间的延长,氢致塑性损失不断增加,拉伸断口由韧窝状韧性断口向脆性解理断口发展,SCC敏感性增大;电化学充氢促进了点蚀坑的萌生,点蚀坑和第二相夹杂是SCC裂纹萌生的重要原因。
关键词 X80管线钢应力腐蚀电化学充氢土壤模拟溶液    
Abstract:Stress corrosion cracking (SCC) of X80 pipeline steel after electrochemically hydrogen-charging in an artificial solution simulated the waters contained in sour soil at Yingtan district in south China was studied by means of potentiodynamic polarization curves, slow strain rate tests (SSRT) and SEM observation. The results show that X80 pipeline steel has high SCC susceptibility in the solution after hydrogen-charging and the failure mode is transgranular cracking. Moreover, the SCC susceptibility and relative plasticity losses increased with increasing electrochemical charging time, the tensile fracture surfaces exhibited a change from ductile dimple fracture to cleavage fracture. In addition, permeation of hydrogen promoted the formation of pits,and therewith pits and nonmetallic inclusions in the steel were found to play an important role for the initiation of SCC cracks.
Key wordsX80 pipeline steel    stress corrosion cracking    electrochemically hydrogen-charging    simulated soil solution
    
ZTFLH:  TG172.4  

引用本文:

梅华生, 王长朋, 张帷, 周漪, 杨王玲. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394.
. Effect of Hydrogen Charging on Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Yingtan Soil Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 388-394.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/388

[1] Liang P, Li X G, Du C W, et al. Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(7): 735-739
(梁平, 李晓刚, 杜翠薇等. Cl-对X80管线钢在NaHCO3 溶液中腐蚀性能的影响 [J]. 北京科技大学学报, 2008, 30(7): 735-739)
[2] Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2011, 47(11): 1434-1439
(刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47(11): 1434-1439)
[3] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50(8): 2251-2257
[4] Zhai G L, Liu Z Y, Du C W, et al. Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution[J]. Corros. Prot., 2009, 30(3): 149-152
(翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀 [J]. 腐蚀与防护, 2009, 30(3): 149-152)
[5] Liang P, Du C W, Li X G, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku’erle soil stimulated solution [J]. Int. J. Miner. Metall. Mater., 2009, 16(4): 407-413
[6] Xie G Y, Tang D, Zhang Y, et al. Resistance of X70 pipeline steel to sulfide stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2008, 28(2): 86-89
(谢广宇, 唐荻, 张雁等. X70级管线钢硫化物应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89)
[7] Yao X J, Wang J Q, Zuo J H, et al. Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 96-101
(姚学军, 王俭秋, 左景辉等. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32(2): 96-101)
[8] Chu W Y, Qiao L J, Chen Q Z, et a1. Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000
(褚武扬, 乔利杰, 陈奇志等. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000)
[9] Ogundele G I, White W E. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide [J]. Corrosion, 1986, 42(2): 71-78
[10] Wallinder D, Hultquist G, Tvetvn B, et al. Hydrogen in chromium: influence on corrosion potential and anodic dissolution in neutral NaCl solution [J]. Corros. Sci., 2001, 43(7): 1267-1281
[11] Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel-concrete interface [J]. Corrosion, 1998, 54(11): 887-897
[12] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive film formed on low carbon steel in borate buffer solution by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci., 2005, 252(5): 1510-1519
[13] Fan L, Li X G, Du C W, et al. Rlectrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 323-326
(范林, 李晓刚, 杜翠薇等. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2012, 32(4): 323-326)
[14] Yang Q, Qiao L J, Chiovelli S, et al. Effects of hydrogen on pitting susceptibility of type 310 stainless steel [J]. Corrosion, 1998, 54(8): 628-633
[15] Qiao L J, Luo J L. Hydrogen-facilitated anodic dissolution of austenitic stainless steels [J]. Corrosion, 1998, 54(4): 281-288
[16] Zhao W M, Wang Y, Xue J, et al. Corrosion mechanism of high velocity oxy-fuel sprayed nicrbsi coatings [J]. J. Xi'an Jiaotong Univ., 2004, 38(3): 286-290
(赵卫民, 王勇, 薛锦等. NiCrBSi超音速火焰喷涂层的电化学腐蚀机制 [J]. 西安交通大学学报, 2004, 38(3): 286-290)
[17] Wang Y B, Wang S, Yan L W. The effects of plastic deformation on hydrogen induced cracking [J]. J. Chin. Soc. Corros. Prot., 2000, 20(4): 248-252
(王燕斌, 王胜, 颜练武. 塑性变形在氢致断裂中的作用 [J]. 中国腐蚀与防护学报, 2000, 20(4): 248-252)
[18] Zhang L, Li X G, Du C W, et al. Effects of applied potentials on stress corrosion cracking of X70 pipeline steel in simulated Ku'erle soil solution [J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 353-359
(张亮, 李晓刚, 杜翠薇等. 外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响 [J]. 中国腐蚀与防护学报, 2009, 29(5): 353-359)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[5] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[6] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[13] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[14] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[15] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.