Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 357-362    
  研究报告 本期目录 | 过刊浏览 |
H2S浓度对35CrMo钢应力腐蚀开裂的影响
郝文魁1, 刘智勇1, 张新2, 杜翠薇1, 李晓刚1, 刘翔1
1. 北京科技大学腐蚀与防护中心 北京 100083;
2. 环境保护部核与辐射安全中心 北京 100082
Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field
HAO Wenkui1, LIU Zhiyong1, ZHANG Xin2, DU Cuiwei1, LI Xiaogang1, LIU Xiang1
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083,China;
2. Nunclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082,China
全文: PDF(6681 KB)  
摘要: 用电化学技术研究了35CrMo钢在含有不同浓度H2S溶液中的腐蚀行为,通过慢应变速率拉伸实验研究了35CrMo钢在不同浓度H2S介质中的应力腐蚀开裂 (SCC) 行为与机理。结果表明:35CrMo钢在pH值为5的H2S环境下存在SCC敏感性,H2S浓度升高,SCC敏感性增加,H2S浓度为200 mg/L时有明显的SCC敏感性。H2S浓度达到200 mg/L时,能明显促进35CrMo钢腐蚀电化学过程进行。在pH值为5的H2S环境下,35CrMo钢的SCC机制是以氢脆 (HE) 为主,阳极溶解(AD)为辅的协同机制。
关键词 35CrMoH2S应力腐蚀腐蚀氢脆    
Abstract:The corrosion behavior and stress corrosion cracking (SCC) of 35CrMo steel were examined respectively by means of electrochemical measurements and slow strain rate tensile test in an artificial solution with various concentration of H2S, which aimed to simulate the drilling well environments at oil field. It is shown that 35CrMo steel exhibits a susceptibility to SCC in hydrogen sulfide solutions with pH=5. The susceptibility increases by decreasing the concentration of H2S. When the concentration of H2S reached 200 mg/L, the corrosion electrochemical process of 35CrMo steel can be promoted, whilst the steel exhibits obvious susceptibility to SCC. The SCC of 35CrMo steel is mainly induced by hydrogen embrittlement (HE) process associated with anodic dissolution (AD) in hydrogen sulfide solutions with pH=5.
Key words35CrMo steel    H2S    stress corrosion cracking    corrosion    hydrogen embrittlement
    
ZTFLH:  TG172.4  

引用本文:

郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
HAO Wenkui, LIU Zhiyong, ZHANG Xin, DU Cuiwei, LI Xiaogang, LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 357-362.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/357

[1] Gelder K, Erlings J G, Damen J W M. The stress corrosion cracking of duplex stainless steel in H2S/CO2/Cl- environments [J]. Corros. Sci., 1987, 27(10/11): 1271-1279
[2] Moraes F D, Bastian F L, Ponciano J A. Influence of dynamic straining on hydrogen embrittlement of UNS-G41300 and UNSS3 1803 steels in a low H2S concentration environment [J]. Corros. Sci., 2005, 47(6): 1325-1335
[3] Veloz M A, Gonzalez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S [J]. Electrochem. Acta, 2002, 48: 135-143
[4] Zhang Y F, Ding Y, Lu X F. Stress corrosion of 304 stainless steel in H2S solution [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 101-103
(张耀丰, 丁毅, 陆晓峰. 304不锈钢在H2S介质条件下的应力腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2):101-103)
[5] Cui S H, Li C F, Wang P F. Stress corrosion cracking of P110 in environment of high contents of H2S and CO2 [J]. J. Chin. Soc. Corros. Prot., 2010, 30(3): 213-216
(崔世华, 李春福, 王朋飞. 高含H2S/CO2环境中P110钢应力腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(3): 213-216)
[6] Turnbull A, Nimmo B. Stress corrosion testing of welded supermartensitic stainless steels for oil and gas pipelines [J]. Corros. Eng. Sci. Technol., 2005, 40 (2): 103-110
[7] Liao J G. High Cr stainless steel OCTG with high strength and superior corrosion resistance [J]. Weld. Pipe Tube., 2006, 29(5): 83-111
[8] Wang M Q, Akiyama E, Suzaki K T. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test [J]. Corros. Sci., 2007, (49): 4081-4097
[9] Yu Q. The research of hydrogen permeation behaviors and environment sensitive fracture mechanism of high strength steel 35CrMo in marine atmosphere [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008
(于青. 35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究 [D]. 青岛: 中国科学院海洋研究所, 2008)
[10] Liu Z Y, Dong C F. Stress corrosion cracking behavior of 35CrMo and 00Cr13Ni5Mo steels in hydrogen sulfide solutions [J]. J. Chem. Ind. Eng., 2008, 59(10): 2561-2567
(刘智勇, 董超芳. 35CrMo和00Cr13Ni5Mo 硫化氢环境应力腐蚀开裂 [J]. 化工学报, 2008, 59(10): 2561-2567)
[11] He J S, Cui H X, Zhu X M, et al. Experimental study on the stress corrosion cracking of bolts [J]. Press Vessel Technol., 2007, 24(2): 19-23
(何家胜, 崔好选, 朱晓明等. 螺栓(35CrMoA)在湿H2S环境中应力腐蚀试验研究 [J]. 压力容器, 2007, 24(2): 19-23)
[12] Chen Y Y, Liu Y M, Shih H C. Stress corrosion cracking of type 321 stainless steels in simulated petrochemical process environments containing hydrogen sulfide and chloride [J]. Mater. Sci. Eng., 2005, A407: 114-152
[13] Srinivasan P B, Sharkawy S W, Diet W. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments [J]. Mater. Sci. Eng., 2004, A385: 6-14
[14] Ma H Y, Cheng X L, Li G Q. The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corros. Sci., 2000, 42(10): 1669-1683
[15] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions [J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 1-7
(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 [J]. 中国腐蚀与防护学报, 2000, 20(1): 1-7)
[16] Tsai S Y, Shih H C. A statistical failure distribution and lifetime assessment of the HSLA steel plates in H2S containing environments [J]. Corros. Sci., 1996, 38(5): 705-719
[17] Qiao L, Mao X. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking [J]. Acta Metall. Mater., 1995, 43(11): 4001-4008
[18] Hu X L, Huang Z Z, Qiao L J, et al. Effect of hydrogen and stress on anodic dissolution [J]. J. Chin. Soc. Corros. Prot., 1996, 16(3): 187-194
(胡小丽, 黄震中, 乔利杰等. 氢和应力对阳极溶解的影响 [J]. 中国腐蚀与防护学报, 1996, 16(3): 187-194)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[15] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.