Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 407-411    
  研究报告 本期目录 | 过刊浏览 |
Al-Zn-Sn-Ga阳极合金的孔蚀活化钝化机理
李君峰,文九巴,贺俊光,马景灵,李高林
河南科技大学材料科学与工程学院 洛阳 471003
MECHANISM OF PITTING CORROSION ACTIVATION AND PASSIVATION OF Al-Zn-Sn-Ga ALLOY
LI Junfeng, WEN Jiuba, HE Junguang, MA Jingling, LI Gaolin
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
全文: PDF(1490 KB)  
摘要: 

采用SEM观察Al-Zn-Sn-Ga合金微观下孔蚀的发展过程。结合电化学相关理论,模拟计算由组织中第二相优先溶解而形成的点蚀孔内pH值与蚀孔深度之间的函数关系;探讨在中性NaCl溶液的腐蚀条件下,自催化效应对该合金蚀孔发展的影响。结果表明,合金的腐蚀孔内pH值随着腐蚀坑深度的增加而急速变大,但在孔蚀深度为0~10-4 cm数量级时pH值变化却极小,此时合金蚀孔由于Ga汞齐等因素的作用导致阴极反应较快,从而使蚀孔钝化。通过三维形貌仪测得该合金点蚀孔钝化深度约10-5 cm数量级,表明理论计算与实验现象吻合较好

关键词 点蚀自催化效应钝化汞齐    
Abstract

The micro developed and passivated process of corrosion pits of Al-Zn-Sn-Ga alloy were investigated by SEM, and the function relationship between pH value and pits depth in corrosion pits was also calculated in order to explain the expanded and passivated mechanism of pitting corrosion under the condition of neutral NaCl solution. The result showed that pH value increased along with the expanding of the depth of corrosion pits. However in the range of 0~10-4 cm, the pH variation was minimal. The cathodic reaction, which could lead to passivation of corrosion pits, gradually became faster because of the activation of Ga amalgam. The passivation depth of corrosion pits was about 10-5 cm.

Key wordspitting corrosion    self-catalysis    passivation    amalgam
收稿日期: 2011-10-10     
ZTFLH:  TG174.41  
基金资助:

河南省科技创新杰出人才计划(094200510019)、河南省自然科学基金(092300410132)和河南科技大学青年科学基金(2010QN0022)资助

通讯作者: 李君峰     E-mail: never-give-up-ljf@163.com
Corresponding author: LI Junfeng     E-mail: never-give-up-ljf@163.com
作者简介: 李君峰, 男,1987年生,硕士生, 研究方向为铝合金阳极材料

引用本文:

李君峰,文九巴,贺俊光,马景灵,李高林. Al-Zn-Sn-Ga阳极合金的孔蚀活化钝化机理[J]. 中国腐蚀与防护学报, 2012, 32(5): 407-411.
LI Junfeng, WEN Jiuba, HE Junguang, MA Jingling, LI Gaolin. MECHANISM OF PITTING CORROSION ACTIVATION AND PASSIVATION OF Al-Zn-Sn-Ga ALLOY. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 407-411.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/407

[1] Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminum sacrificial anode performance: case of Al-Zn [J]. J. Appl. Electrochem., 1999, 29(9): 1063-1071

[2] Yang T J, Li G M, Chen S, et al. Self-catalysis action in pitting propagation process of low alloy steels[J]. Corros. Prot., 2010, 31(7): 540-541 

     (杨铁军, 李国明, 陈珊等. 低合金钢点蚀扩展过程中的自催化作用[J]. 腐蚀与防护, 2010, 31(7): 540-541)

[3] Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminum alloy[J]. Corros. Sci., 2010, 53(2): 620-626

[4] Xu G, Cao C N, Lin H C, et al. Electrochemical study of active dissolution for aluminum in neutral NaCl solution[J]. Corros. Sci. Prot. Technol., 1998, 10(6): 321-326

     (许刚, 曹楚南, 林海潮等. 纯铝在NaCl 溶液中活化溶解时电化学行为研究[J]. 腐蚀科学与防护技术, 1998, 10(6): 321-326)

[5] Qi G T, Guo Z H, Wei B K, et al. The effect of water-quenching on microstructure and electrochemistry performance of Al-Zn-Sn-Mg anode[J]. Trans. Met. Heat Treat., 2000, 21(4): 68-72 

      (齐公台, 郭稚弧, 魏伯康等. 固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响[J]. 金属热处理学报, 2000, 21(4): 68-72)

[6] Cao C N. Principles of Electrochemistry[M]. Beijing: Chemical Industry Press, 2007

    (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)

[7] Wen J B, Wang G W, Ma J L, et al. Effect of gallium on electrochemical properties of Al-Zn-Sn alloy anode[J]. Trans. Met. Heat Treat., 2010, 31(8): 30-33

    (文九巴, 王国伟, 马景灵等.Ga对Al-Zn-Sn系阳极合金电化学性能的影响[J]. 材料热处理学报, 2010, 31(8): 30-33)

[8] Zhu H W, Qu X Y, Hu Y, et al. Corrosion inhibition of flaky aluminum powders prepared through sol-gel process[J]. Corros. Sci., 2010, 53(1): 481-486

[9] Abedin S Z E, Enders F. Electrochemical behavior of Al, Al-In and Al-Ga-In alloys in chloride solutions containing zinc ions[J]. J. Appl. Electrochem., 2004, 34(10): 1071-1080

[10] Dean J A. Lange's Chemistry Handbook[M]. American: McGraw-Hill, 2003

[11] Naeini M F, Shariat M H, Eizadjou M. On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process[J]. J. Alloys Compd., 2011, 509(14): 4696-4700

[12] Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method[J]. Acta Metall. Sin., 2007, 43(3): 249-253

    (刘贵立. 递归法研究钛合金应力腐蚀机理[J]. 金属学报, 2007, 43(3): 249-253)

[13] Ei Shabyeb H A, Abd Ei Vahab F M. Effect of gallium ions  on the electrochemical behavior of Al-Sn and Al-Sn-Zn alloys in chloride solution[J]. Corros. Sci., 2001, 43(4): 642-643

[14] Bessone J B, Flamini D O, Saidman S B. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium[J]. Corros. Sci., 2005, 47(1): 95-105

[15] Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54(2): 445-452

[16] Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841-1847

[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.