Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 235-240    
  研究报告 本期目录 | 过刊浏览 |
304不锈钢点蚀的电化学噪声特征
李季,赵林,李博文,郑丽群,韩恩厚
中国科学院金属研究所环境腐蚀中心,沈阳 110016
ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION
LI Ji, ZHAO Lin, LI Bowen,ZHENG Liqun, HAN En-Hou
Environmental Corrosion Research Center,Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1283 KB)  
摘要: 使用电化学噪声技术,通过长期连续实时监测,对304不锈钢在0.5mol/L FeCl3溶液中发生局部腐蚀的点蚀发展过程和腐蚀机理进行研究。综合谱图分析、时域统计分析、小波分析等诸多方法进行分析和论证。结果表明:电化学噪声的谱图可以明显地分为4个阶段,分别对应于点蚀发展过程中的钝态期、亚稳态点蚀期、稳态点蚀期及稳态点蚀后期。在时域分析时,先用3阶多项式拟合移除漂移,电流噪声标准偏差Si在亚稳蚀和稳态点蚀阶段发生明显的升高,噪声电阻(Rn)、点蚀指标(PI)在对应时间点表现出相应的降低或升高。小波分析表明,随着反应的进行,能量积累开始逐步增大;亚稳态点蚀期能量开始向d4~d6处累积,当进一步发展为稳态点蚀时d5~d8出现极大值。
关键词 304不锈钢点蚀电化学噪声    
Abstract:The localized corrosion behavior of 304 stainless steel immersed in 0.5 mol/L FeCl3 solution was investigated for a long-term monitoring as long as 350 h by electrochemical noise (EN) technique. The EN data was analyzed mainly by spectrum analysis, time-domain statistical analysis and wavelet transform. The whole process can be divided into four parts, which can be differentiated clearly according to the characteristic EN transient peaks. The variations of current standard deviation, Rn and PI during the whole monitoring period all give the coincident result. The 3D energy distribution plots(EDP) give the energy contribution of each detail crystals during the whole monitoring time. The figure which only concerns contribution of detail crystals shows that, the energy accumulation in band d4~d6 increases with the metastable pits occurrence. And as this process stepped into stable pitting stage, a max of the energy contribution occurs during the band d5~d8.
Key words304 stainless steel    pitting corrosion    electrochemical noise(EN)
收稿日期: 2011-05-22     
ZTFLH: 

TG174.3

 
通讯作者: 赵林     E-mail: zhaolin@imr.ac.cn
Corresponding author: ZHAO Lin     E-mail: zhaolin@imr.ac.cn
作者简介: 李季,女,1985年生,硕士生,研究方向为腐蚀电化学

引用本文:

李季,赵林,李博文,郑丽群,韩恩厚. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
LI Ji, DIAO Lin, LI Bo-Wen, ZHENG Li-Qun, HAN En-Hou. ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION. J Chin Soc Corr Pro, 2012, 32(3): 235-240.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/235

[1] Ying  D Y. Application and application requirement of stainless steel in petrochemical industry [J]. Proc. Equip. Piping.2002, 39 (6): 46-47

    (应道宴. 不锈钢在石化行业的应用及使用要求[J].化工设备与管道, 2002, 6: 46-47)

[2] Bertocci U, Huet F. Noise analysis applied to electrochemical system [J]. Corrosion, 1995, 51(2): 131-144

[3] Iverson W P. Transient voltage changes produced in corroding metals and alloys [J]. J.Electrochem. Soc., 1968, 115:617-618

[4] Zhang T, Shao Y W, Meng G Z, et al. Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution [J]. Electrochim. Acta, 2007, 53: 561-568

[5] Hladky K, Dawson J L. The measurement of localized corrosion using electrochemical noise [J]. Corros. Sci., 1981, 21:317-322

[6] Cheng Y F, Wilmott M, Luo J L. Analysis of the role of electrode capacitance on the initiation of pits for A516 carbon steel by electrochemical noise measurements [J]. Corros. Sci., 1999,41: 1245-1256

[7] Helmuth S  K, Joachim G, Andreas H. The influence of the cathodic process on the interpretation of electrochemical noise signals arising from pitting corrosion of stainless steels [J].Corros. Sci., 2010, 52: 1362-1372

[8] Al-Mazeedi H A A, Cottis R A.A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787-2793

[9] Huang J Y, Qiu Y B, Guo X P. Comparation of polynomial fitting and wavelet transform to remove drift in electrochemical noise analysis [J]. Corros. Eng. Sci. Technol., 2010, 45(4): 288-294

[10] Aballe A, Bethencourt M, Botana F J, et al. Using wavelet transform in the analysis of electrochemical noise data [J]. Electrochem. Acta, 1999, 44: 4805-4816

[11] Muniandy S V, Chew W X, Kan C S. Multifractal modeling of electrochemical noise in corrosion of carbon steel[J]. Corros. Sci.,2011, 53: 188-200

[12] Kim J J.Electrochemical noise analysis of localized corrosion by wavelet transform [J]. Met. Mater. Int., 2010, 16(5):747-753

[13] Pedro M G, Francisco C, Juan Alejandro V F. Assessing corrosion risk in reinforced concrete using wallets [J]. Corros.Sci., 2010, 52: 555-561

[14] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solution [J]. Electrochim. Acta, 1999,44: 4795-4804

[15] Gusmano G, Montesperelli G, Pacetti S, et al. Electrochemical noise resistance as a tool for corrosion rate prediction [J]. Corrosion,1997, 53(11): 860-868

[16] Chen J F, Bogaerts W F. The physical meaning of noise resistance [J]. Corros. Sci., 1995, 37:1839-1842

[17] Mansfeld F, Xiao H. Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity [J]. Ibid,1993, 140(8): 2205-2209

[18] Cao F H, Zhang Z, Su J X, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359-1364

[19] Gabrielli C, Keddam M. Review of applications of impedance and noise analysis to uniform and localized corrosion [J].Corrosion, 1992, 48(10):794-811

[20] Park K J, Kwon H S. Effect of Mn on the localized corrosion behavior of Fe-18Cr alloys [J]. Electrochim. Acta, 2010,55: 3421-3427

[21] Zheng S J, Wanga J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58(15):5070-5085
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.