Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 228-234    
  研究报告 本期目录 | 过刊浏览 |
超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究
蔡新华1,徐世2,尹世平3,何真1
1.武汉大学 水资源与水电工程科学国家重点实验室武汉 430072
2.浙江大学建筑工程学院 杭州 310058
3.中国矿业大学力学与建筑工程学院 徐州 221116
EXPERIMENTAL RESEARCH ON BOND BEHAVIORS OF CORRODED REBAR AND ULTRA HIGH TOUGHNESS CEMENTITIOUS COMPOSITES (UHTCC)
CAI Xinhua1 XU Shilang2, YIN Shiping3, HE Zhen1
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,Wuhan 430072
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058
3. School of Architecture and Civil Engineering, China University of Mining and Technology, Xuzhou 221116
全文: PDF(1435 KB)  
摘要: 通过电化学加速锈蚀、钢筋和UHTCC直接拉拔试验对不同锈蚀率(0,1%,2%,3%和5%)下钢筋与UHTCC的粘结性能进行了研究,并与同条件下的混凝土试件进行对比。通过直接拉拔实验得到不同锈蚀率时平均粘结应力与滑移量的关系,采用粘结滑移的连续模型进行拟合,模型值与实验值吻合较好。与混凝土试件锈蚀率超过2%后最大平均粘结应力迅速下降现象不同,UHTCC能充分发挥其对钢筋的约束作用,在锈蚀率小于3%范围内,最大平均粘结应力随锈蚀率增大线性增加,锈蚀率超过3%直到5%基本维持不变,保持较好的粘结性能。
关键词 钢筋锈蚀超高韧性粘结性能粘结-滑移应变硬化    
Abstract:Ultra high toughness cementitious composites (UHTCC), featured with its strain hardening characteristic and outstanding crack controlling under tensile conditions, could greatly enhance the durability of reinforced concrete structures and prolong the service life of infrastructures. By means of accelerated corrosion test and direct pulling test, bond properties between corroded rebar with different corrosion ratio(0, 1%, 2%, 3% and 5%) and UHTCC were investigated, did the same for corroded rebar and ordinary concrete while other things being equal. The relationships between average bond stress and end slip with different corrosion ratio were presented. A constitutive model for bond slip relation between rebar and UHTCC was applied for simulating the test results, and fit well. The relationship between maximum average bond stress and corrosion ratio indicated that UHTCC could restrict the corrosion expansion. The maximum average bond stress of rebar and UHTCC increased linearly before corrosion ratio up to 3%, then remained constant till to 5%, while the maximum average bond stress between rebar and concrete decreased rapidly when the corrosion ratio exceeded 2%.
Key wordsrebar corrosion    ultra high toughness    bond behavior    bond-slip    strain hardening
收稿日期: 2011-10-18     
ZTFLH: 

TU375

 
基金资助:

国家自然科学基金项目(51109170)和中央高校基本科研业务费专项资金(111121)资助

通讯作者: 蔡新华     E-mail: caixinhua@whu.edu.cn
作者简介: 蔡新华,男,1980年生,讲师,研究方向为新型建筑材料及结构工程耐久性

引用本文:

蔡新华,徐世,尹世平,何真. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J]. 中国腐蚀与防护学报, 2012, 32(3): 228-234.
SA Xin-Hua, XU Shi-Lang, YUN Shi-Beng, HE Zhen. EXPERIMENTAL RESEARCH ON BOND BEHAVIORS OF CORRODED REBAR AND ULTRA HIGH TOUGHNESS CEMENTITIOUS COMPOSITES (UHTCC). J Chin Soc Corr Pro, 2012, 32(3): 228-234.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/228

[1] Qian S, Lepech M D, Kim Y Y, et al. Introduction of transition zone design for bridge deck link slabs sing ductile concrete[J]. ACI Struct. J., 2009, 106: 96-105

[2] Lepech M D, Li V C, Robertson R E, et al. Design of green engineered cementitious composites for improved sustainability[J]. ACI Mater. J., 2008, 105(6): 567-575

[3] Qian S Z , Li V C. Influence of concrete material ductility on headed anchor pullout performance[J]. ACI Mater. J,2009, 106: 72-81

[4] Kanda T, Li V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. J. Adv. Concr. Technol.,2006, 4(1): 59-72

[5] Xu S L, Wang H C. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar[J]. Eng.Mech., 2008, 25(11): 53-63

    (徐世,王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J].工程力学, 2008, 25(11): 53-63)

[6] Zhang X F, Xu S L. Improvement of the flexural and cracking behavior of RC beams using ultra-high toughness cementitious composites(I): Theoretical analysis[J]. China Civil Eng. J., 2008, 41(12): 48-54

    (张秀芳,徐世.采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(I):基本理论[J]. 土木工程学报, 2008, 41(12): 48-54)

[7] Yubun A, Balaguru P, Chung L. Bond behavior of corroded reinforcement bars[J]. ACI Mater. J., 2000, 97(2): 214-220

[8] He Shiqin. Experimental Studies on Durability of Reinforced Concrete Members in Chloride Environment[D]. Dalian:Dalian University of Technology, 2004

    (何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D]. 大连: 大连理工大学,2004)

[9] Feng X G, Tang Y M, Zhao X H, et al. Distribution of corrosion potential and corrosion current of rebars in concrete structure nearby liquid level[J]. J. Chin. Soc. Corros. Prot., 2009,29(6): 459-464

   (冯兴国, 唐聿明, 赵旭辉等.混凝土结构中钢筋腐蚀电位与腐蚀电流在液面附近的分布[J].中国腐蚀与防护学报, 2009, 29(6): 459-464)

[10] Jiang Z W, Wang L J. Environment erosion and surface protection techniques of reinforced concrete[J]. Corros. Sci. Prot.Technol., 2004, 16(5): 309-312

    (蒋正武, 王莉洁.钢筋混凝土的环境侵蚀与表面防护技术[J]. 腐蚀科学与防护技术, 2004,16(5): 309-312)

[11] Wang L K, Tao F, Wang Q L. Experimental study on bond and anchorage of corroded reinforcement in concrete[J]. Ind. Constru.,1996, 26(4): 14-16

     (王林科, 陶峰, 王庆霖等.锈后钢筋混凝土粘结锚固的试验研究[J]. 工业建筑, 1996, 26(4): 14-16)

[12] Coronelli D. Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete[J]. ACI S. J.,2002, 99(3): 267-276

[13] Zhao Y X, Jin W L. Test study on bond behavior of corroded steel bars and concrete[J]. J. Zhejiang Univ. (Eng. Sci.),2002, 36(4): 352-356

     (赵羽习, 金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J]. 浙江大学学报, 2002, 36(4):352-356)

[14] Lee H S, Noguchi T, Tomosawa F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of the reinforcement corrosion[J]. Cement Concr. Res., 2002,32: 1313-1318

[15] Gao D Y, Zhu H T, Xie J J. The Constitutive models for bond slip relation between FRP rebars and concrete[J]. Ind. Constr.,2003, 33(7): 41-44

     (高丹盈, 朱海堂, 谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-44)

[16] Wang H C. Experimental Study on Bond Behavior between Ultra High Toughness Cementitious Composites and Steel Bar[D]. Dalian: Dalian University of Technology, 2007

    (王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究[D]. 大连:大连理工大学, 2007)

[17] Xu S L, Li H D. A review on the development of research and application of ultra high toughness cementitious composites[J].China Civil Eng. J., 2008, 41(6): 45-60

     (徐世,李贺东. 超高韧性水泥基复合材料研究进展及其工程应用 [J].土木工程学报, 2008, 41(6): 45-60)

[18] Sahmaran M, Li V C, Andrade C. Corrosion resisitance performance of steel-reinforced engineered cementitious composite beams[J]. ACI Mater. J., 2008, 105(3): 243-250

[19] Kanda T, Saito T, Sakata N, et al. Tensile and anti-spalling properties of direct sprayed ECC[J]. J. Adv. Concr.Technol., 2003, 1(3): 269-282
[1] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[2] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[3] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.