Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 241-246    
  研究报告 本期目录 | 过刊浏览 |
循环静水压力对牺牲阳极阴极保护的影响
胡胜楠1,张涛1,2,邵亚薇1,2,孟国哲1,2,王福会1,2
1. 哈尔滨工程大学 超轻材料与表面技术教育部重点实验室腐蚀与防护实验室 哈尔滨 150001
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION
HU Shengnan1, ZHANG Tao1,2, SHAO Yawei1,2, MENG Guozhe1,2, WANG Fuhui1,2
1. Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1381 KB)  
摘要: 实验模拟了常压和3.5MPa静水压力循环作用下,牺牲阳极阴极保护系统(CP)中阳极对阴极的保护。利用电化学测试法,结合SEM分析,对CP系统进行了电化学测量和腐蚀形貌观察,并对腐蚀产物进行了XRD成分分析。结果表明:在循环静水压力下,阴极的保护电位升高;牺牲阳极表面形成了一层相对致密的腐蚀产物壳层,导致其工作电位升高,放电能力下降;CP系统中斜率参数增大,牺牲阳极对阴极的保护效果变差。
关键词 阴极保护牺牲阳极循环静水压力    
Abstract:The protective performance of cathodic protection (CP) system consisted of Zn-Bi sacrificial anode and Ni-Cr-Mo-V steel was investigated by electrochemical measurements and morphology observation. The shallow-deep water alternating cycle was simulated by immersed the CP system to cyclic conditions of 16 h immersion at atmospheric pressure and 8 h pressurized at 3.5 MPa. The experiment results indicated that the cyclic hydrostatic pressure had significant influence on the CP system. Comparing with the counterpart at atmospheric pressure, the anode potential instantaneously responded to the cyclic hydrostatic pressure and the discharge performance of anode decreased due to the deposition of corrosion product. At the cyclic hydrostatic pressure, the CP system exhibited the higher slope parameter, which indicated that the CP system can not provide the adequate protection for Ni-Cr-Mo-V steel.
Key wordscathodic protection    sacrificial anode    cyclic hydrostatic pressure
收稿日期: 2011-04-12     
ZTFLH: 

TG174.41

 
通讯作者: 张涛     E-mail: zhangtao@hrbeu.edu.cn
Corresponding author: ZHANG Tao     E-mail: zhangtao@hrbeu.edu.cn
作者简介: 胡胜楠,女,1987年生,硕士,研究方向为材料的腐蚀与防护

引用本文:

胡胜楠,张涛,邵亚薇,孟国哲,王福会. 循环静水压力对牺牲阳极阴极保护的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 241-246.
HU Qing-Nan, ZHANG Shou. EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION. J Chin Soc Corr Pro, 2012, 32(3): 241-246.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/241

[1] Fischer K P, Sydberger T, Lye R. Field Testing of Deep Water Cathodic Protection on the Norwegian Continental Shelf [A],Corrosion/87[C]. Houston, TX: NACE, 1987, 67

[2] Kennelley K J, Mateer M W. Evaluation of the Performance of Bimetallic Anodes on Deep-Water Production Platform [A],Corrosion/93[C]. Houston, TX: NACE, 1993, 523

[3] Chen S, Hartt W H, Wolfson W. Deepwater cathodic protection: Part 2-Field deployment results [J]. Corrosion. 2003,59(8): 721-732

[4] Fischer K P. Deep water: Considerations of the Cathodic Protection Design Basis[A], Offshore Technology Conference,Houston[C]. 1999: 11057

[5] Chen S, Hartt W H, Wolfson W. Deepwater cathodic protection: part 1-laboratory simulation experiments [J]. Corrosion.2002, 58(1): 38-48

[6] 李妍. 深水导管架的阴极保护[J]. 全面腐蚀控制, 2004, 18(4):18-20

[7] Fischer K P, Finnegan J E. Cathodic Protection Behavior of Steel in Seawater and the Protective Properties of the Calcareous Deposits [A], Corrosion/89[C].Houston, TX: NACE, 1989, 582

[8] Wang W, Hartt W H, Chen S. Sacrificial anode cathodic polarization of steel in seawater: Part 1-A novel experimental and analysis methodology [J]. Corrosion. 1996, 52(6): 419-427

[9] Chen S, Hartt W H, Townley D. Sacrificial anode cathodic polarization of steel in seawater: Part 2-Design and data analysis[J]. Corrosion. 1998, 54(4) 317-322

[10] Bethune K, Hartt W H. Applicability of the slope parameter method to the design of cathodic protection systems for marine pipelines [J]. Corrosion. 2001, 57(1): 78-84

[11] Perkins J, Bornholdt R A.The corrosion product morphology found on sacrificial zinc anodes [J].Corros. Sci., 1977, 17: 377-384\par
[1] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[5] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[6] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[7] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[8] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[9] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[10] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[11] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[12] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[13] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[14] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[15] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.