Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 483-487    
  研究报告 本期目录 | 过刊浏览 |
304L不锈钢在两种高温高压水溶液中形成的钝化膜半导体性质研究
张胜寒,连佳,檀玉
华北电力大学环境科学与工程学院 保定 071003
SEMICONDUCTOR CHARACTER OF PASSIVE FILMS FORMED ON 304L STAINLESS STEEL IN ZINC CONTAINED HIGH TEMPERATURE WATER
ZHANG Shenghan, LIAN Jia, TAN Yu
Environment Science and Engineering School,North China Electric Power University, Baoding 071003
全文: PDF(552 KB)  
摘要: 304L不锈钢在ZnSO4和Na2SO4两种高温高压水溶液中腐蚀后表面形成一层钝化膜,对腐蚀后样品在硼酸缓冲溶液(pH8.4)中进行动电位扫描,并绘制其Mott-Schottky(M-S)曲线;利用光电流法,绘制(Iphh\nu/I01/2-光子能量曲线,详细分析表面钝化膜半导体性质。结果表明:含锌样品表面钝化膜呈现多层结构;钝化膜的半导体类型为n型(不含锌样品钝化膜呈p型);平带电位负移;载流子浓度降低;Zn2+对304L不锈钢钝化膜半导体的结构及性质有较大的影响。
关键词 锌离子高温水不锈钢钝化膜半导体性质    
Abstract:Semiconductor properties of the passive film formed on 304L stainless steel (SS) in high-temperature and high-pressure water with (or no) zinc addition were investigated using anodic polarization curves, Mott-Schottky plots and photocurrent method in buffer solution. And the donor density, flat band and band gap were analyzed to investigate the effect of zinc addition on the passive film particularly. The results indicated that the passive film formed on 304L with zinc addition was composed of many layers; the passive film with zinc addition behaved as a n-type semiconductor, a p-type with no zinc addition; the flat band shifted negatively; the carrier concentration reduced; It was concluded that zinc addition had great influence in the structures and semiconductor properties of 304L stainless steel (SS).
Key wordszinc addition    high temperature water    stainless steel    passive film    semiconductor character
收稿日期: 2010-11-29     
ZTFLH: 

TG142.7

 
基金资助:

国家自然科学基金项目(50971059)资助

通讯作者: 连佳     E-mail: lianjia198687@sina.com
作者简介: 张胜寒,男,1962年生,教授,博士,研究方向为金属腐蚀与防护

引用本文:

张胜寒,连佳,檀玉. 304L不锈钢在两种高温高压水溶液中形成的钝化膜半导体性质研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 483-487.
LIAN Jia. SEMICONDUCTOR CHARACTER OF PASSIVE FILMS FORMED ON 304L STAINLESS STEEL IN ZINC CONTAINED HIGH TEMPERATURE WATER. J Chin Soc Corr Pro, 2011, 31(6): 483-487.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/483

[1] Hosokawa H, Nagase M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under bwr conditions [J]. Nucl. Sci. Technol., 2004, 41(6): 682-689

[2] EPRI TR-104606, Dec.1994

[3] Ziemniak S E, Hanson M. Zinc treatment effects on corrosion behavior of 304 stainless steel in high temperature,hydrogenated water[J]. Corros. Sci., 2006, 48: 2525-2546

[4] Ziemniak S E, Hanson M. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water [J]. Corros. Sci., 2006, 48: 3330-3348

[5] Haginuma M, Ono S, Sambongi M, et al. Effect of metal ion addition on cobalt accumulation reduction and its thermodynamic evaluation[A], 1998 Int. Conf. on Water Chemistry in Nuclear Power Plants[C]. Kashiwazaki, Japan: 1998

[6] Sudensh T L, Wijesinghe L. Daniel John Blackwood: Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels [J]. Corros. Sci.,2008, 50: 23-34

[7] Macak J, Sajdl P, Kucera P, et al. In \ situ electro-chemical impedance and noise measurements of corroding stainless steel in high temperature water[J]. Electrochim.Acta, 2006, 51: 3566-3577

[8] Montemor M F, Ferreira M G S, Hakiki N E, et al. Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments [J]. Corros. Sci., 2000, 42: 1635-1650

[9] Hamadou L, Kadri A, Benbrahim N, et al. Characterization of thin anodically grown oxide films on AISI 304L stainless steel [J]. Electrochem. Soc. 2007, 154: 291-297

[10] Rangel C M, Silva T M, da Cunha B M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochim. Acta, 2005, 50: 5076-5082

[11] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel[J]. Electrochim.Acta, 1999, 44: 2947-2957

[12] Li N, Li Y, Wang S G, et al, Corrosion behavior of nanocrystallized bulk 304 stainless steel-the research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80-83

 (李楠, 李瑛, 王胜刚等,轧制纳米块体304不锈钢腐蚀行为的研究-钝化膜耐氯离子侵蚀能力[J].中国腐蚀与防护学报, 2007, 27(2): 80-83)

[13] Janney D E, Porter D L. Characterization of phases in‘crud’ from boiling-water reactors by transmission electron [J].Micros. Nucl. Mater., 2007, 362: 104-115

[14] Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature hydrogenated water[J]. Corros.Sci., 2002, 44: 2009-2230

[15] Ziemniak S E, Hanson M. Corrosion behavior of NiCrFe alloy 600 in high temperature, hydrogenated water[J]. Corros. Sci.,2006, 48: 498-521

[16] Sudesh T L, Wijesinghe L, Blackwood D J. Characterisation of passive films on 300 series stainless steels[J]. Appl. Surf.Sci., 2006, 253: 1006-1009

[17] Cheng Y F, Steward F R. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques[J].Corros. Sci., 2004, 46: 2405-2420

[18] Di Paola A. Semiconducting properties of passive films on stainless steels [J], Electrochim. Acta, 1989, 34: 203-210

[19] Bockris. J O M, Khan  S U M. Surface Electrochemistry: A Molecular Lever Approach[M]. New York: Plenum Press, 1993

[20] Chen C F, Jiang R J, Zhang G A, et al. Analysis of the space charge capacitance of bipolar semiconductor passive films [J].Acta Phys. Chim. Sin., 2009, 25(3): 463-469

 (陈长风, 姜瑞景,张国安等. 双极性半导体钝化膜空间电荷电容分析[J]. 物理化学学报.2009,25(3): 463-469)

[21] Mott N F, Davis E A. Electronic Processes in Non-crystalline Materials[M]. Oxford: Clarendon Press, 1979

[22] Fujimoto S, Tsuchiya H. Semiconductor properties and protective role of passive films of iron base alloys [J]. Corros.Sci., 2007, 49: 195-202

[23] Tsuchiya H, Fujimoto S, Shibata T. Semiconductive properties of passive films formed on Fe-18Cr in borate buffer solution [J]. Electrochem. Soc., 2004, 39: 151-159
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[14] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.