Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 436-440    
  研究报告 本期目录 | 过刊浏览 |
不同镍基堆焊材料在高温高压水中的应力腐蚀行为研究
郦晓慧,王俭秋,韩恩厚,柯伟
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
STRESS CORROSION CRACKING BEHAVIORS FOR DIFFERENT NI-BASED WELDING MATERIALS IN HIGH TEMPERATURE AND HIGH PRESSURE WATER
LI Xiaohui, WANG Jianqiu, HAN EnHou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1200 KB)  
摘要: 通过U弯浸泡实验研究了电渣焊600合金、电渣焊690合金和埋弧焊690合金三种材料的应力腐蚀行为。研究结果表明:模拟压水堆核电站一回路水化学工况,温度为325℃,压力为15.8 MPa,溶液中含1.5×10-3 B、2.3×10-6 Li、2.5×10-6 H2,浸泡1193 h后,电渣焊600合金、电渣焊690合金和埋弧焊690合金样品均未发生应力腐蚀开裂。在温度为330℃,压力为11 MPa,含10 mass% NaOH的高温高压强碱溶液中,电渣焊600合金样品浸泡720 h后发生了应力腐蚀开裂,最大裂纹长度为835 μm;浸泡1440 h后,裂纹进一步扩展,达到1135 μm,具有典型的沿晶应力腐蚀开裂(IGSCC)特征;电渣焊690合金样品经过1440 h浸泡后,表面萌生长度为0.3 μm到1.15 μm不等的微裂纹;埋弧焊690合金样品经过1440 h浸泡后未发生应力腐蚀开裂。
关键词 电渣焊600合金电渣焊690合金埋弧焊690合金应力腐蚀    
Abstract:U-bend immersion tests were used for studying the stress corrosion cracking behaviors for electroslag welding (ESW) Alloy 600, electroslag welding (ESW) Alloy 690 and submerged-arc welding (SAW) Alloy 690. Results showed that electroslag welding Alloy 600, electroslag welding Alloy 690 and submerged-arc welding Alloy 690 samples were immune to stress corrosion cracking in simulated primary water of pressurized water reactor (PWR) after being immersed for 1193 h, which contained 1.5×10-3 B, 2.3×10-6 Li, 2.5×10-6 H2 at 325 ℃, 15.8 MPa. However, stress corrosion cracks were observed in electroslag welding Alloy 600 after being immersed in 10 wt.% NaOH alkali solution for 720 h at 330℃, 11 MPa. The maximum crack length was 835 μm after 720 h immersion and further expanded to 1135 μm after 1440 h immersion with a typical intergranular stress corrosion cracking (IGSCC) characteristic. For electroslag welding Alloy 690, microcracks were initiated with the length of 0.3 μm to 1.15 μm and stress corrosion crack was not observed.
Key wordselectroslag welding alloy 600    electroslag welding alloy 690    submerged-arc welding alloy 690    stress corrosion cracking
收稿日期: 2010-09-03     
ZTFLH: 

TG172.8

 
基金资助:

国家重大科技专项(2010ZX06004-009)资助

通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: wangjianqiu@imr.ac.cn
作者简介: 郦晓慧,男,1984年生,博士生,研究方向为核电关键材料的力学与化学交互作用

引用本文:

郦晓慧,王俭秋,韩恩厚,柯伟. 不同镍基堆焊材料在高温高压水中的应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 436-440.
ZHI Xiao-Hui, YU Jian-Qiu, HAN En-Hou, KE Wei. STRESS CORROSION CRACKING BEHAVIORS FOR DIFFERENT NI-BASED WELDING MATERIALS IN HIGH TEMPERATURE AND HIGH PRESSURE WATER. J Chin Soc Corr Pro, 2011, 31(6): 436-440.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/436

[1] Coriou H, Grall L, Mahieu C, et al. Sensitivity to stress corrosion and intergranular attack of  high - nickel austenitic alloys[J]. Corrosion, 1966, 22: 280-290

[2] Ding X S. The manufacture of PWR steam generator [J].Nucl. Power Plant, 2003, 4: 11-18

    (丁训慎,压水堆核电站蒸汽发生器的制造[J]. 核电站, 2003, 4: 11-18)

[3] Hwang S S, Hur D H, Han J H, et al. PWSCC of thermally treated alloy 600 pulled from a Korean plant [J]. Nucl. Eng. Des.,2002, 217: 237-245

[4] Hwang S S, Kim H P, Lim Y S, et al. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead [J]. Corros. Sci., 2007, 49(10): 3797-3811

[5] Park I G, Lee C S, Hwang S S, et al. Caustic stress corrosion cracking of alloys 600 and 690 with NaOH concentrations [J]. Met. Mater. Int., 2005, 11(5): 401-409

[6] Yang W, Lu Z P, Huang D L, et al. Caustic stress corrosion cracking of nickel-rich, chromium-bearing alloys [J]. Corros. Sci.,2001, 43(5): 963-977

[7] Yi Y, Eom S, Kim H, et al. Nickel boride (NiB) as an inhibitor for an IGSCC of Alloy 600 and its applicability [J]. J.Nucl. Mater., 2005, 347: 151-160

[8] Peng Q, Shoji T, Yamauchi H, et al. Intergranular environmentally assisted cracking of alloy 182 weld metal in simulated normal water chemistry of boiling water reactor [J].Corros. Sci., 2007, 49: 2767-2780

[9] Bao G, Shinozaki K, Iguro S, et al. Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting [J]. J. Mater. Proc. Technol., 2006, 173: 330-336

[10] ASTM G 30-97 (Reapproved 2003), Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens [S]

[11] Kim J D,Moon J H. C-ring stress corrosion test for Inconel 600 and Inconel 690 sleeve joint welded by Nd:YAG laser [J]. Corros. Sci., 2004, 46: 807-818
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.