Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (4): 250-254    
  综述 本期目录 | 过刊浏览 |
无铅焊料的腐蚀性能研究现状及展望
王明娜1,王俭秋1,冯皓2,柯伟1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 广州电器科学研究院 工业产品环境适应性国家重点实验室 广州 510300
CURRENT STATUS AND FUTURE OF RESEARCH ON CORROSION FOR LEAD-FREE SOLDER MATERIALS
WANG Mingna1, WANG Jianqiu1, FENG Hao2, KE Wei1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. State Key Laboratory of Environment Adaptability for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510300
全文: PDF(441 KB)  
摘要: 就Sn-Ag、Sn-Cu、Sn-Ag-Cu和Sn-Zn几种主要的无铅焊料合金系阐述了当前对无铅焊料腐蚀性能的研究情况。指出当前研究只关注了焊料本体的腐蚀性能,而在焊接过程中焊料熔化和凝固后的微观结构和化学等将发生变化,这些对腐蚀有很大影响。提出进一步研究应关注实际焊点与服役环境的交互作用机制。。
关键词 无铅焊料腐蚀氧化    
Abstract:Corrosion performance of Sn-Ag, Sn-Cu, Sn-Ag-Cu and Sn-Zn lead-free solders are examined in this paper. The previous investigations were only focused on the solder itself, however, during the soldering process the solder was melted and then solidified. Compared to original solder material, the microstructure and chemistry of the solidified solder may change, which will affect the corrosion behavior of the solder during service in aggressive environment. So the investigation in the future should focus on the corrosion behavior of the solder joint used in aggressive environment.
Key wordslead-free solder    corrosion    oxidation
收稿日期: 2010-05-21     
ZTFLH: 

TG172

 
基金资助:

广州电器科学研究院工业产品环境适应性国家重点实验室资助

通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: Ming-Na WANG     E-mail: wangjianqiu@imr.ac.cn
作者简介: 王明娜,女,1982年生,博士生,研究方向为无铅焊料的腐蚀行为

引用本文:

王明娜,王俭秋,冯皓,柯伟. 无铅焊料的腐蚀性能研究现状及展望[J]. 中国腐蚀与防护学报, 2011, 31(4): 250-254.
YU Meng-Na, YU Jian-Qiu. CURRENT STATUS AND FUTURE OF RESEARCH ON CORROSION FOR LEAD-FREE SOLDER MATERIALS. J Chin Soc Corr Pro, 2011, 31(4): 250-254.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I4/250

[1] Mulugeta A, Guna S. Lead-free solders in microelectronics [J].Mater. Sci. Eng., 2000, 27: 95-141

[2] Tong X. Diffusion of lead-free soldering in electronics industry in China [J]. Chin. Popu. Res. Envi.,2007, 17(6): 66-71

[3] Lin C Y, Chou J H, Lee Y G, Mohanty U S. Preparation of Sn-3.5Ag nano-solder by supernatant process [J].J. Alloys Compd., 2009, 470: 328-331

[4] Janne J S, Sami T N, Toivo K L, Eero O R. Mechanical and microstructural properties of SnAgCu solder joints [J]. Mater. Sci. Eng., 2006, A 420: 55-62

[5] Cai J Q . Present situation and future development of low temperature lead-free solder mounting [J].Print. Circuit Inform., 2009, 1: 65-69

    (蔡积庆. 低温无铅焊料焊接的现状和未来展望 [J]. 印制电路信息, 2009, 1: 65-69)

[6] Katsuaki S. Advances in lead-free electronics soldering [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 55-64

[7] Ma X L. Research on SnAgCu solder alloys [D].Beijing: Beijing University of Industry, Masteral Dissertation,2004: 9-10

    (马秀玲. SnAgCu系无铅钎料的研究 [D]. 北京:北京工业大学硕士学位论文, 2004: 9-10)

[8] Kamal M, Gouda E S. Effect of zinc additions on structure and properties ofSn--Ag eutectic lead-free solder alloy [J]. J.Mater. Sci.: Mater. Electron., 2008, 19: 81-84

[9] Ma X, He P. Lead-free Soldering Technology in Electronics Assembly [M]. Haerbin: Haerbin University Publishing House, 2006: 69

    (马鑫, 何鹏. 电子组装中的无铅软钎焊技术 [M]. 哈尔滨:哈尔滨大学出版社, 2006: 69)

[10] Li W L, Song J M, Lai Y S, et al. Alloying modification of Sn-Ag-Cu solders by manganese and titanium [J]. Microelectr. Reliabil.,2009, 49: 235-241

[11] Sharif A, Chan Y C. Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization [J]. Thin Solid Films, 2006, 504: 431-435

[12] Islam M N, Chan Y C, Rizvi M J, et al. Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder [J]. J. Alloys Compd., 2005, 400: 136-144

[13] Wei X Q, Zhou L, Huang H Z. Effect of oxidation on wettability of Sn-Zn alloys [J]. Chin. J.Nonferrous Met., 2009, 19(1): 174-178

     (魏秀琴, 周浪, 黄惠珍. 氧化对Sn-Zn系无铅焊料润湿性的影响 [J]. 中国有色金属报, 2009, 19(1): 174-178)

[14] Zhang F W, Liu J, Yang F B, et al. Developing tendency and current situation of Sn-Ag-Cu lead-free solder [J]. Chin. J. Rare Met., 2005, 29(5): 619-624

     (张富文, 刘静, 杨福宝等. Sn-Ag-Cu无铅焊料的发展现状与展望 [J]. 稀有金属, 2005, 29(5): 619-624)

[15] Liu D. The Study on Mixture Design of Multiplex Sn-Zn system Lead-free Solder [D]. Changchun:Jilin University, 2008: 12-14

     (刘丹. 多元Sn-Zn系无铅钎料混料设计的研究 [D]. 长春: 吉林大学硕士学位论文, 2008: 12-14)

[16] Hu C C, Wang C K. Effects of composition and reflowing on the corrosion behavior of Sn-Zn deposits in brine media [J]. Electrochim.Acta, 2006, 51: 4125-4134

[17] Gueorgui P, Evgueni S, Svetla K, et al. Studies of the phase equilibria in the Ag-Sn-Zn system [J]. J. Alloys Compd., 2001, 327: 285-291

[18] Wei C, LiuY C, Gao Z M, et al. Effects of aging on structural evolution of the rapidly solidified Sn-Ag-Zn eutectic solder [J]. J. Alloys Compd., 2009, 468: 154-157

[19] Tsai Y L, Hwang W S. Solidification behavior of Sn-9Zn-xAg lead-free solder alloys [J]. Mater. Sci. Eng., 2005, A406 312-316

[20] Rocak D, Macek S, Sitek S, et al. A reliability study of the lead-free solder connections of miniature chip components on hybrid circuits [J]. Microelectron. Reliabil., 2007, 47: 986-995

[21] Andersson C, Liu J. Effects of corrosion on the low cycle fatigue behavior of Sn-4.0Ag-0.5Cu lead-free solder joints [J]. Int. J.Fatigue, 2008, 30: 917-930

[22] Zou H. Study of the reliability of lead-free solder joint [J]. J. Civil Aviation Univ.China, 2007, 25(3): 49-52

     (邹慧. 无铅焊点的可靠性研究 [J]. 中国民航大学学报, 2007, 25(3): 49-52)

[23] Shen J, Liu Y C, Han Y J, et al. Effects of cooling rates on microstructure and microhardness of lead-free Sn-3.5%Ag solders [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 59-64

[24] Bui Q V, Nam N D. Effect of Ag addition on the corrosion properties of Sn-based solder alloys [J]. Mater. Corros., 2009, 61(1): 30-33

[25] Zhao M Q, Lei A L. The Corrosion and Protection of Metal [M]. Beijing: National Defence Industry Publishing House, 2002: 122

     (赵麦群, 雷阿丽. 金属的腐蚀与防护 [M]. 北 京: 国防工业出版社, 2002: 122)

[26] Li D Z, Paul P C, Liu C Q. Corrosion characterization of tin-lead and lead free solders in 3.5 wt% NaCl solution [J].Corros. Sci., 2008, 50: 995-1004

[27] TianHua Institute of Chemical Machinery & Automation. Manual of corrosion and protection, Volume 1, Theory of corrosion\examination and check [M]. Beijing: Chemical industry Publishing House, 2009: 16

     (天华化工机械及自动化研究设计院主编. 腐蚀与防护手册, 第一卷, 腐蚀理论\试验及检测 [M]. 北京: 化学工业出版社, 2009: 16)

[28] Masato M, Kazuma M, Takeshi S. Corrosion of tin alloys in sulfuric and nitric acids [J]. Corros. Sci., 2002, 44: 887-898

[29] Yoon J W, Noh B I, Kim B K. Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints [J]. J. Alloys Compd., 2009: 142-147

[30] Huwang C W, Suganuma K. Joint reliability and high temperature stability of Sn-Ag-Bi lead-free solder with Cu and Sn-Pb/Ni/Cu substrates [J]. Mater. Sci. Eng., 2004,A373: 187-194

[31] Rosalbino F, Angelini E, Zanicchi G.Corrosion behaviour assessment of lead-free Sn-Ag-M (M=In, Bi, Cu) solder alloys [J].Mater. Chem. Phys., 2008,109: 386-391

[32] Oulfajrite H, Sabbar A, Boulghallat M, et al. Electrochemical behavior of a new solder material (Sn-In-Ag) [J]. Mater.Lett., 2003, 57: 4368-4371

[33] Sun L H. The Influence with the Trace Content of Ni & Re for Sn0.7Cu Lead-free Solder [D]. Xian: Xian University of Technology, 2008: 36

     (孙立恒. 微量Ni\Re对Sn0.7Cu无铅焊料性能的影响 [D]. 西安: 西安理工大学, 2008: 36)

[34] Fan Z G. Research of the Electrochemical Corrosion Behaviors of Lead-free Solders [D].Dalian: Dalian University of Technology, 2008: 22-36

     (樊志罡. 无铅焊料的电化学腐蚀行为研究 [D]. 大连: 大连理工大学, 2008: 22-36)

[35] Li J X. The Research of Sn-Zn System without Ag Lead-free Solder [D]. Zhenjiang: Jiangsu University, 2009: 6

     (李建新. 新型Sn-Cu系无银无铅焊料的研究 [D]. 镇江:江苏大学, 2009: 6)

[36] Rosalbino F, Angelini E, Zanicchi G.Electrochemical corrosion study of Sn-3Ag-3Cu solder alloys in NaCl solution [J]. Electrochim.Acta, 2009, 54(28): 7231-7235

[37] Li P P, Zhou J, Sun Y S, et al. Investigation on corrosion performance of lead-free solders [J].Function Mater., 2007, 38: 3267-3270

     (李培培, 周建, 孙扬善等. 无铅焊料的盐雾腐蚀性能研究 [J]. 功能材料, 2007, 38: 3267-3270)

[38] Mohanty U S, Lin K L. Electrochemical corrosion behaviour of Pb-free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu alloys in chloride containing aqueous solution [J]. Corros. Sci., 2008, 50: 2437-2443

[39] Chang H, Chen H T. Generation of Tin (Ⅱ) oxide crystals on lead-free solder joints in deionized water [J]. J. Electron. Mater.2009, 38(10): 2170-2178

[40] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloy with rare earth elements additions [J]. Mater.Sci. Eng., 2004, R44: 1-44

[41] Wu B Y, Chan Y C, Alam M O. Electrochemical corrosion study of Pb-free solders [J]. J. Mater.Res., 2006, 21(1): 62-70

[42] Lu B, Zhu H W, Huang H. Effect of Ge on oxidation resistance of Sn-0.3Ag-0.7Cu lead-free solder [J]. Casting Forging Weld., 2009,38(7): 6-13

     (卢斌, 朱华伟, 黄欢. Ge对Sn-3.0Ag-0.7Cu基无铅钎料抗氧化性影响 [J]. 金属铸锻焊技术,2009, 38(7): 6-13)

[43] Lu B, Li H, Wang J H, et al. Effect of Er on microstructure and properties of Sn-3.0Ag-0.5Cu lead-free solder alloy [J]. Chin. J. Nonferrous Met., 2007, 17(4): 518-524

     (卢斌, 栗惠, 王娟辉等. 稀土Er对Sn-3.0Ag-0.5Cu无铅焊料合金的组织与性能的影响 [J]. 中国有色金属学报, 2007, 17(4): 518-524)

[44] Tian J. Corrosion properties of SnAgCuEr lead-free solders [J]. China Sci. Technol.Inform., 2006, 24:293-295

     (田君, SnAgCuEr系钎料的抗腐蚀性研究 [J]. 中国科技信息, 2006, 24: 293-295)

[45] Liu J, Xu J, Zhang F W, et al. Property of new type lead-free solder Sn-Ag-Cu-Cr-X [J].Chin. J. Rare Met., 2005, 29(5): 625-630

     (刘静, 徐骏, 张富文等. 新型无铅焊料Sn-Ag-Cu-Cr-X的性能研究 [J]. 稀有金属, 2005, 29(5): 625-630)

[46] Dudek M A, Chawla N. Oxidation behavior of rare-earth-containing Pb-free solders [J].J. Electron. Mater., 2009, 38(2): 210-220

[47] Huang H Z. A Study of Sn-9Zn Lead-free Electronic Solder and its Improvement by Alloying [J]. Nanchang : Nanchang University, 2006: 11

     (黄惠珍. Sn-9Zn无铅电子焊料及其合金化改性研究 [D]. 南昌:南昌大学, 2006: 11)

[48] Katsuaki S, Kuen S K. Sn-Zn low temperature solder [J]. J. Mater. Sci.: Mater.Electron., 2007, 18: 121-127

[49] Song J M, Liu P C, Shih C L, et al. Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering [J]. J. Electron.Mater., 2005, (34)9: 1249-1253

[50] Xia Z D, Mu N, Shi Y W. Corrosion behavior of tin-zinc based alloy solder [J]. J. Chin.Soc. Corros. Prot., 2003, 23(4): 234-238

     (夏志东, 穆楠, 史耀武. 锡锌钎料的腐蚀行为 [J]. 中国腐蚀与防护学报, 2003, 23(4): 234-238)

[51] Xia Z D. Investigation and evolution of high capability green lead-free solder [J]. Metall.Functional Mater., 2002, (23): 185-191

     (夏志东. 绿色高性能无铅钎料的研究与进展 [J]. 电子工艺技术, 2002, (23): 185-191)

[52] Xian J Y. Atmospheric corrosion of Sn-9Zn eutectic Pb-free solder [J]. Corros. Sci. Prot.Technol., 2008, 20(5): 347-349

     (冼俊扬. Sn-9Zn共晶型无铅焊料的大气腐蚀行为 [J]. 腐蚀科学与防护技术, 2008, 20(5): 347-349)

[53] Jiang J X, Lee J E, Kim K S, et al. Oxidation behavior of Sn-Zn solders under high-temperature and high-humidity conditions [J].J. Alloys Compd.,2008, 462: 244-251

[54] Chang T C, Wang J W, Wang M C. Solderability of Sn-9Zn-0.5Ag-1In lead-free solder on Cu substrate Part 1. Thermal properties,microstructure, corrosion and oxidation resistance [J]. J. Alloys Compd.,2006, 422: 239-243

[55] El-Daly A A, Swilem Y, Makled M H, et al. Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys [J]. J. Alloys Compd., 2009, 484: 134-142

[56] Kim K S, Matsuura T, Suganuma K. Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems [J]. J.Electron. Mater., 2006, 35(1): 41-47

[57] Wang H, Xue S B, Chen W X. Effect of Al addition on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder [J]. Electric Welding Mach., 2008, 38(9): 61-64

     (王慧, 薛松柏, 陈文学. Al对Sn-Zn钎料耐腐蚀及高温抗氧化性的影响 [J]. 电焊机, 2008, 38(9): 61-64)

[58] Wu X J, Xue F, Zhou J, et al. Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders [J]. J. Southeast Univ.,2009, 39(3): 623-628

     (吴晓婧, 薛烽, 周健等. Cu\Ni对Sn-Zn-Al无铅焊料组织和性能的影响 [J]. 东南大学学报, 2009, 39(3): 623-628)

[59] Fan Z G, Ma H T, Wang L. Effect of Cu on electrochemical corrosion behavior of lead-free Sn-9Zn solder [J]. Chin. J. Nonferrous Met.,2007, 17(8): 1302-1306

     (樊志罡, 马海涛, 王来. Cu对Sn-9Zn无铅钎料电化学腐蚀性能的影响 [J]. 中国有色金属学报, 2007,17(8): 1302-1306)

[60] Lee J E, Kim K S, Inoue M, et al. Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zn eutectic alloy [J]. J. Alloys Compd., 2008, 454: 310-320

[61] Li X Y, Lei Y P, Xia Z D, et al. Influence of the content of Ag to corrosion nature of Sn-Zn-Ag lead-free solders [J]. Electron. Proc. Technol.,2006, 27(2): 70-77

     (李晓燕, 雷永平, 夏志东等. Ag含量对Sn-Zn-Ag无铅钎料腐蚀性能的影响 [J]. 电子工艺技术, 2006, 27(2): 70-77)

[62] Mohanty U S, Lin K L. Effect of Al on the electrochemical corrosion behaviour of Pb free Sn-8.5 Zn-0.5 Ag-XAl-0.5 Ga solder in 3.5% NaCl solution [J]. Appl. Surf. Sci., 2006, 252: 5907-5916

[63] Mohanty U S, Lin K L. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-XAg-0.1 Al-0.5 Ga solder in 3.5% NaCl solution [J]. Mater.Sci. Eng., 2005, A406: 34-42
 
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[11] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[15] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.