Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (5): 347-353    
  研究报告 本期目录 | 过刊浏览 |
铸造AZ91镁合金在CO32-/HCO3-体系中的应力腐蚀行为
黄发,陈健,王俭秋
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
STRESS CORROSION CRACKING BEHAVIORS OF AS-CAST AZ91 MAGNESIUM ALLOY IN CO32-/HCO3- SOLUTIONS
HUANG Fa, CHEN Jian, WANG Jianqiu
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(3305 KB)  
摘要: 用电化学实验、浸泡实验与慢应变速率拉伸实验研究铸造AZ91 镁合金在不同浓度比例的CO32-/HCO3-溶液体系中的应力腐蚀(SCC)行为。结果表明,随着溶液pH值的升高,AZ91 镁合金的应力腐蚀敏感性降低。点蚀是AZ91镁合金在该实验体系下的裂纹萌生源,随着实验时间的延长,萌生于点蚀底部的微裂纹会逐渐扩展形成主裂纹,主裂纹靠吞并其前端的微裂纹向前扩展,直至发生SCC失效。
关键词 AZ91镁合金应力腐蚀开裂CO32-/HCO3-溶液    
Abstract:The stress corrosion cracking (SCC) behaviors of as-cast AZ91 magnesium alloy in CO32-/HCO3- solutions were investigated by electrochemical test, immersion test and slow strain rate test (SSRT) respectively. The results showed that the stress corrosion cracking sensitivity of as-cast AZ91 alloy in CO32-/HCO3- solutions decreased with the increase of pH values of the solutions. The surface was covered by a film mainly composed of Mg(OH)2 and Al(OH)3. Al(OH)3 could be dissolved in alkaline solutions and AlO2- engendered. Pitting was the main crack source of AZ91 alloy in such solutions. The cracking of β phase also resulted in microcracks in the matrix. Microcracks initiating at the bottom of pitting combined into a main crack. The main crack propagated by coalescence of the existing microcracks ahead until the SCC fracture occurred.
Key wordsAZ91 magnesium alloy    stress corrosion cracking    CO32-/HCO3- solution
收稿日期: 2009-09-28     
ZTFLH: 

TG172.6

 
基金资助:

国家自然科学基金项目(50499336)资助

通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: wangjianqiu@imr.ac.cn
作者简介: 黄发,女,1985年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

黄发,陈健,王俭秋. 铸造AZ91镁合金在CO32-/HCO3-体系中的应力腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 347-353.
HUANG Fa, CHEN Jian, YU Jian-Qiu. STRESS CORROSION CRACKING BEHAVIORS OF AS-CAST AZ91 MAGNESIUM ALLOY IN CO32-/HCO3- SOLUTIONS. J Chin Soc Corr Pro, 2010, 30(5): 347-353.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I5/347

[1] Liu Z, Zhang K, Zeng X Q. Theory and Application of Mg-based Light Alloy [M]. Beijing: China Machine Press, 2002     (刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M].北京:机械工业出版社, 2002) [2] Wang F P, Li X G, Lin C, et al.Atmospheric corrosion behavior of AZ91D magnesium alloy in Beijing area [J]. J. Chin. Soc. Corros. Prot., 2004, 24(6): 345-349     (王凤平, 李晓刚, 林翠等. AZ91D 镁合金在北京地区的大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2004, 24(6): 345-349) [3] Lin C, Li X G. Initial corrosion of AZ91D magnesium alloy in atmosphere containing SO2 [J]. Chin. J. Nonferrous Met., 2004,14(10): 1658-1665     (林翠, 李晓刚. AZ91D 镁合金在含 SO2大气环境中的初期腐蚀行为 [J]. 中国有色金属学报, 2004, 14(10): 1658-1665) [4] Chen J, Wang J Q, Han E H, et al. Effects of dust and salt particles on the formation and spreading of micro-droplets [J].Corros. Sci., 2008, 50 (5): 1449-1459 [5] Chen J, Wang J Q, Han E H,et al. In situ  observation of the formation and spreading of micro-droplets on magnesium and its alloys under wet-dry condition [J]. Corros. Sci., 2007, 49(3): 1625-1634 [6] Wu Z N, Li P J, Liu S X, et al. The actuality of study in magnesium corrosion [J]. Foundry,2001, 50(10): 583-586     (吴振宁, 李培杰, 刘树勋等. 镁合金腐蚀问题研究现状 [J]. 铸造, 2001, 50(10): 583-586) [7] Chen J, Wang J Q, Han E H, et al. Corrosion behavior of AZ91D magnesium alloy in sodium sulfate solution [J]. Mater. Corros.,2005, 57(10): 789-793 [8] Chen J, Wang J Q, Han E H, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1 M Na2SO4 solution [J]. Mater. Sci. Eng., 2008, A 488(1-2): 428-434 [9] Gulbrandsen E. Anodic behaviour of Mg in HCO3-/CO32- buffer solutions. Quasi-steady measurements [J]. Electrochem.Acta, 1992, 37(8): 1403-1412 [10] Vermilyea D A, Kirk C F. Study of inhibition of magnesium corrosion [J]. J. Electrochem. Soc., 1969, 116(11): 1487-1492 [11] Fairman L, West J M. Stress corrosion cracking of a magnesium aluminium alloy [J]. Corros. Sci., 1965, 5(10): 711-716 [12] Chen J, Wang J Q, Han E H, et al. States and transport of hydrogen in the corrosion process of AZ91 magnesium alloy in aqueous solution [J]. Corros. Sci., 2008, 50(5): 1292-1305 [13] Pourbaix M. Atlas d' Equilibres Electrochimiques [M]. Paris: Gauthier Villars, 1963 [14] Song G L. Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2006         (宋光铃. 镁合金腐蚀与防护 [M]. 北京:化学工业出版社, 2006) [15] Lide D R. Handbook of Chemistry and Physics [M]. CRC press, 2003 [16] Zhang X Y. Handbook of Practical Chemistry [M]. Beijing: National Defense Industry Press, 1986      (张向宇. 实用化学手册 [M]. 北京:国防工业出版社, 1986)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[8] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[9] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[10] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[11] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[12] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[13] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[14] 潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 489-494.
[15] 王彬彬, 王振尧, 曹公望, 钟西舟, 柯伟. 受力的LY12和LC4铝合金在中国西部盐湖大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 287-293.