Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 129-136    DOI: 10.11902/1005.4537.2014.058
  本期目录 | 过刊浏览 |
M/A组元对高强度管线钢抗H2S性能的影响
史显波1,2, 王威1, 严伟1, 单以银1, 杨柯1()
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels
SHI Xianbo1,2, WANG Wei1, YAN Wei1, SHAN Yiyin1, YANG Ke1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(5811 KB)   HTML
摘要: 

研究了两种X90级别具有针状铁素体组织结构的高强度管线钢的抗H2S性能。结果表明,具有大尺寸M/A组元的管线钢的抗H2S性能不佳,表现为随着实验条件的加剧,氢致鼓泡密度增加,氢致开裂 (HIC) 参数提高,硫化物应力腐蚀开裂 (SSC) 失效时间变短。通过对比两种钢中不同尺寸、不同体积分数M/A组元的差异,结合SEM对氢致裂纹扩展路径进行观察,解释了M/A组元对H2S腐蚀性能的影响及机理。控制M/A组元体积分数在8%以下和尺寸小于2 μm将不会影响管线钢的抗H2S腐蚀行为。

关键词 高强度管线钢针状铁素体马氏体/奥氏体组元氢致开裂硫化物应力腐蚀开裂    
Abstract

Resistance to hydrogen sulfide (H2S) corrosion was studied for two X90 grade high strength pipeline steels with the same microstructure of acicular ferrite (AF). The results showed that the AF microstructure with fine martensite/austenite (M/A) constituent had better resistances to both hydrogen-induced cracking (HIC) and sulfide stress corrosion cracking (SSC). The larger size M/A constituent in AF microstructure deteriorated the H2S-resistance of the steels such as that with the decreasing pH value and increasing immersion time, the density of hydrogen-induced blisters on the steel surface increased and the HIC parameters increased, while its time-to-failure of SSC was shorter compared to the steel with finer M/A constituent. The different susceptibilities to H2S cracking of the two high strength pipeline steels were interpreted from the view points of size and quantity of M/A constituent, which was observed from the HIC propagation path by SEM. It is suggested that X90 pipeline steels for sour gas/oil service should have a lower amount of M/A constituent (<8%) and an effective M/A constituent size control (<2 μm) by TMCP as well as a proper chemical composition optimization, thereby to ensure their resistance to H2S.

Key wordshigh strength pipeline steel    acicular ferrite    martensite/austenite constituent    hydrogen-induced cracking    sulfide stress corrosion cracking
收稿日期: 2014-04-24     
ZTFLH:  TG142.1  
基金资助:“十二五”国家科技支撑计划项目 (2011BAE25B03)资助
作者简介: null

史显波,男,1988年生,博士生

引用本文:

史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
Xianbo SHI, Wei WANG, Wei YAN, Yiyin SHAN, Ke YANG. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 129-136.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.058      或      https://www.jcscp.org/CN/Y2015/V35/I2/129

Steel C Si Mn S P Mo Cu Cr Ni Al Nb+V+Ti Fe
A 0.046 0.14 1.53 0.0014 0.0050 0.20 0.31 0.30 0.10 0.061 0.132 Bal.
B 0.046 0.10 1.68 0.0013 0.0050 0.19 0.30 0.29 0.20 0.031 0.117 Bal.
表1  实验用钢的化学成分
Steel Rolling temperature / ℃ Accelerated cooling
Cooling rate ℃/s Final cooling temperature / ℃
A 1100 1056 1000 892 854 800 772 15 300
B 1079 1046 987 890 835 800 750 20 ---
Interpass reduction distribution / mm 80~60 60~45 45~30 30~24 24~16 16~11 11~8 --- ---
表2  实验用钢的TMCP轧制工艺
图1  HIC试样取向及检测面示意图
图2  恒载荷应力腐蚀试样示意图
图3  两种管线钢显微组织的OM和SEM像
Steel ?Yield strength(YS / MPa) Ultimate tensile
strength (UTS / MPa)
YS/UTS
ratio
Elongation
%
Uniform
elongation / %
Impact
tough / J
A 620 720 0.86 23.5 8.6 116
B 657 729 0.90 23.5 9.4 116
表3  实验用钢的力学性能
图4  两种钢氢致开裂 (HIC) 宏观腐蚀形貌
图5  B钢中氢鼓泡与氢致裂纹形貌
Steel Sample The initial pH=2.7 and the ending pH=3.2, 96 hours Steel Sample The initial pH=1.9 and the ending
pH=3.0, 288 hours
CSR / % CLR / % CTR / % CSR / % CLR / % CTR / %
A 1 0 0 0 A 7 0.03 11.4 0.3
2 0 0 0 8 0 0 0
3 0 0 0 9 0 0 0
Average 0 0 0 Average 0.01 3.8 0.1
B 4 0.3 60.9 1.9 B 10 1.2 67.0 3.1
5 0.1 35.8 0.7 11 1.1 39.1 3.4
6 0.2 22.3 0.7 12 0.1 13.1 0.9
Average 0.2 39.7 1.1 Average 0.8 39.7 2.5
表4  两种钢的氢致裂纹参数
图6  两种钢的氢致裂纹扩展路径的SEM像
图7  Lapara腐蚀液腐蚀的A钢和B钢的光学组织形貌
图8  A钢和B钢中M/A岛平均尺寸分布图
Steel Microstructure Yield strength / MPa Loading strength Time / h
A AF+M/A 620 80%, 496 MPa >720
90%, 558 MPa >720
B AF+M/A 657 80%, 526 MPa 479
90%, 591 MPa 203
表5  两种实验钢硫化物应力腐蚀开裂实验结果
图9  B钢在加载应力90%σs下SSC断口的SEM像
[1] Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel[J]. Mater. Sci. Eng., 2010, A527: 6997
[2] Mendibide C, Sourmail T. Composition optimization of high-strength steels for sulfide stress cracking resistance improvement[J]. Corros. Sci., 2009, 51: 2795
[3] Zhao M C, Shan Y Y, Li Y H, et al. The effect of microstructure on the sulfide stress corrosion cracking in the pipe steel[J]. Acta Metall.Sin., 2001, 37(10): 1087
[3] (赵明纯, 单以银, 李玉海等. 显微组织对管线钢硫化物应力腐蚀开裂的影响[J]. 金属学报, 2001, 37(10): 1087)
[4] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57: 141
[5] Koh S U, Jung H G, Kang K B, et al. Effect of microstructure on hydrogen-induced cracking of linepipe steels[J]. Corrosion, 2008, 64(7): 574
[6] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of line pipes steel[J]. Corros. Sci., 2008, 50: 1856
[7] Beidokhti B, Dolati A, Koukabi A H. Effect of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507: 167
[8] Nayaka S S, Misra R D K, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel[J]. Mater. Sci. Eng., 2008, A494: 456
[9] Shen Z, Li Y H, Shan Y Y, et al. Influence of sulfur content and microstructure of pipeline steels on mechanical property and H2S-resistant behavior[J]. Acta Metall. Sin., 2008, 44(2): 215
[9] (沈卓, 李玉海, 单以银等. 硫含量及显微组织对管线钢力学性能和抗H2S行为的影响[J]. 金属学报, 2008, 44(2): 215)
[10] Wang S C, Yang J R. Effects of chemical composition, rolling and cooling conditions on the amount of martensite/austenite (M/A) constituent formation in low carbon bainitic steels[J]. Mater. Sci. Eng., 1992, A154: 43
[11] Wang C M, Wu X F, Liu J, et al. Study on M/A islands in pipeline steel X70[J]. J. Univ. Sci. Technol. Beijing, 2005, 12(1): 43
[12] Tong K, Zhuang C J, Liu Q, et al. The microstructure of martensite/austenite (M/A) constituent in the pipeline steels and its effects on the mechanical properties[J]. Mater. Mech. Eng., 2011, 35(2): 4
[12] (仝珂, 庄传晶, 刘强等. 高钢级管线钢中M/A岛的微观特征及其对力学性能的影响[J]. 机械工程材料, 2011, 35(2): 4)
[13] Chu W Y. Hydrogen Damaged and Delayed Fracture[M]. Beijing: Metallurgy Industry Press, 1988
[13] (褚武扬. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988)
[14] Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels[J]. Corros. Sci., 2008, 50: 3336
[15] Hara T, Asahi H, Ogawa H. Conditions of hydrogen-induced corrosion occurrence of X65 grade line pipe steels in sour environments[J]. Corrosion, 2004, 60(12): 1113
[16] Ale R M, Rebello J M A, Charlier J. A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel[J]. Mater. Charact., 1996, 37:89
[17] Chen J H, Kikuta Y, Araki T, et al. Micro-fracture behaviour induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel[J]. Acta Metall., 1984, 32(10): 1779
[18] Oriani R A. Hydrogen embrittlement of steels[J]. Ann. Rev. Mater.Sci., 1978, 8: 327
[19] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides[J]. Scr. Mater., 2005, 52: 881
[1] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[2] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[3] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[4] 董希青,黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[5] 姚学军,王俭秋,左景辉,韩恩厚,柯伟. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
[6] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[7] 崔世华,李春福,王朋飞,邓洪达. 高含H2S/CO2环境中P110钢应力腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(3): 213-216.
[8] 镇凡;刘静;黄峰;程吉浩;李翠玲;郭斌;徐进桥. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.
[9] 谢广宇 . X70级管线钢抗硫化物应力腐蚀开裂实验研究[J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89 .
[10] 邵绪分 . X70管线钢近中性环境氢致开裂与阳极溶解的关系[J]. 中国腐蚀与防护学报, 2008, 28(2): 76-80 .
[11] 董绍华; 吕英民; 李启楷 . 氢致裂纹扩展的分形研究进展[J]. 中国腐蚀与防护学报, 2001, 21(3): 188-192 .
[12] 王燕斌; 王胜; 颜练武 . 塑性变形在氢致断裂中的作用[J]. 中国腐蚀与防护学报, 2000, 20(4): 248-252 .
[13] 程玉峰;杜元龙. A3钢在含Fe~(3+)的盐酸溶液中的脆断机理[J]. 中国腐蚀与防护学报, 1995, 15(2): 81-86.