Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 287-293    DOI: 10.11902/1005.4537.2013.150
  本期目录 | 过刊浏览 |
受力的LY12和LC4铝合金在中国西部盐湖大气环境中的腐蚀行为
王彬彬, 王振尧(), 曹公望, 钟西舟, 柯伟
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Atmospheric Corrosion Behavior of Pre-strained Aluminum Alloys LY12 and LC4 in Salt Lake Environment in Western China
WANG Binbin, WANG Zhenyao(), CAO Gongwang, ZHONG Xizhou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5858 KB)   HTML
摘要: 

通过现场大气暴露实验,利用金相显微镜和SEM等手段分析试样表面和截面形貌,研究了U弯受力状态下包铝与无包铝的LY12和LC4两种铝合金在我国西部盐湖大气环境中的腐蚀行为。结果表明,包铝的两种铝合金的腐蚀主要发生在包铝层,以点蚀为主,未观察到包铝层被穿透现象。无包铝的铝合金试样都发生了明显的沿晶应力腐蚀开裂,其中LY12铝合金在拉应力和压应力下都有较多的应力腐蚀裂纹,LC4铝合金只在拉应力下观察到了裂纹;两种铝合金在压应力下都发生了剥层腐蚀,拉应力下剥层腐蚀受到抑制。

关键词 LY12铝合金LC4铝合金盐湖大气环境应力腐蚀开裂剥层腐蚀    
Abstract

Atmospheric corrosion behavior of U-bended aluminum alloy plates of LY12 and LC4 with/without Al cladding was investigated by field exposure in salt lake environment in Western China for 2 a. Then their surface and cross-sectional morphology was examined by metalloscope and SEM. The results showed that the corrosion behavior of the Al clad alloys LY12 and LC4 was mainly pitting corrosion within the cladding and no pits penertrating the cladding could be observed after 2 a exposure. For the bare alloys LY12 and LC4, severe stress corrosion cracking (SCC) was observed in the test. Both tensile- and compressive-stress could lead to SCC in for LY12, while only tensile stress could induce SCC for LC4 during the exposure. Exfoliation corrosion (EFC) of LY12 and LC4 occurred under compressive stress but not under tensile stress.

Key wordsLY12 alloy    LC4 alloy    salt-lake atmospheric environment    SCC    EFC
收稿日期: 2013-10-29     
ZTFLH:  TG174  
基金资助:国家自然科学基金重点项目(51131007);国防技术基础项目(H102011B002);国家电网科技项目(KG12K16004和5211DS110493)资助
作者简介: null

王彬彬,男,1985年生,博士生,研究方向为材料大气腐蚀

引用本文:

王彬彬, 王振尧, 曹公望, 钟西舟, 柯伟. 受力的LY12和LC4铝合金在中国西部盐湖大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 287-293.
Binbin WANG, Zhenyao WANG, Gongwang CAO, Xizhou ZHONG, Wei KE. Atmospheric Corrosion Behavior of Pre-strained Aluminum Alloys LY12 and LC4 in Salt Lake Environment in Western China. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 287-293.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.150      或      https://www.jcscp.org/CN/Y2014/V34/I3/287

Material Fe Si Cu Mn Zn Mg Al
LY12
0.50
0.50
4.18
0.30
0.30
1.30~1.80
Bal.
LC4 0.50 0.50 1.30 0.40 5.59 2.49 Bal.
表1  LY12和LC4两种实验材料的化学成分
图1  
图2  
图3  
图4  
图5  
图6  
图7  
[1] Liu J A,Xie S S. Application and Development of Aluminium Alloy[M]. Beijing: Metallurgical Industry Press, 2011: 71-74
[1] (刘静安,谢水生. 铝合金材料应用与开发[M]. 北京: 冶金工业出版社, 2011: 71-74)
[2] Vargel C. Corrosion of Aluminium [M]. Paris: Dunod, 2004: 235-289
[3] Ailor W H. Atmospheric Corrosion [M]. New York: John Wiley and Sons, 1982: 353-364
[4] Lee T S. Degradation of metals in atmosphere, STP 965 [M]. Philadelphia: American Society of Testing and Materials, 1988: 191-205
[5] Cao C N. Material Natural Environmental Corrosion of China[M]. Beijing: Chemical Industry Press, 2005: 108-122
[5] (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005: 108-122)
[6] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51: 719-727
[7] Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China[J]. Corros. Sci., 2011, 53: 2527-2538
[8] Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminium alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46: 1649-1667
[9] Shi Y Y, Zhang Z, Su J X, et al. Electrochemical noise study on 2024-T3 Aluminium alloy corrosion in simulated acid rain under cyclic wet-dry condition[J]. Electrochim. Acta, 2006, 51: 4977–4986
[10] Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process[J]. Chin. J. Nonferrous Met., 2007, 17: 326-334
[11] Wang Z Y, Ma T, Han W, et al. Corrosion behaviors of Al alloy LC4 in simulated polluted atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 321-326
[11] (王振尧, 马腾, 韩薇等. LC4铝合金在模拟污染大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(6): 321-326)
[12] Han W, Wang Z Y, Yu G C. Atmospheric corrosion behavior of two high strength aluminum alloys with aluminum overlayer under strain[J]. Corros. Sci. Prot. Technol., 2003, 15(5): 254-258
[12] (韩薇, 王振尧, 于国才. 两种包铝的高强铝合金受力状态下的大气腐蚀行为[J]. 腐蚀科学与防护技术, 2003, 15(5): 254-258)
[13] An B G, Zhang X Y, Song S Z, et al. A study of electrochemical impedance spectrum for corrosion behavior of LY12 aluminum alloy in simulated acid rain[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 167-170
[13] (安百刚, 张学元, 宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究[J]. 中国腐蚀与防护学报, 2003, 23(3): 167-170)
[14] Cai J P, Liu M, Luo Z H, et al. Study on accelerated tests for aluminum alloy atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot., 2005, 25(5): 262-266
[14] (蔡健平, 刘明, 罗振华等. 航空铝合金大气腐蚀加速试验研究[J]. 中国腐蚀与防护学报, 2005, 25(5): 262-266)
[15] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al clad 7075 and 2024 aluminum alloy in coastal environment[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 195-202
[15] (孙霜青, 赵予兵, 郑弃非等. 包铝的7075和2024合金在海洋大气环境中点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202)
[16] Zhang X Y, Sun Z H, Liu M H, et al. Influence of different enviroments on stress corrosion cracking of high strength aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 354-362
[16] (张晓云, 孙志华, 刘明辉等. 环境对高强度铝合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362)
[17] Zheng X Y,Zhang M G,Xu C,et al. Saline Mark of China[M]. Beijing: Science Technology Press, 2002: 1-43
[17] (郑喜玉,张明刚,徐昶等. 中国盐湖志[M]. 北京: 科学技术出版社, 2002: 1-43)
[18] Wang Z Q. Pickled Soil of China[M]. Beijing: Science Technology Press, 1993: 251-310
[18] (王遵亲. 中国盐渍土[M]. 北京: 科学技术出版社, 1993: 251-310)
[19] He M S, He S L, Ji X C. GB/T15970.3-1995. Corrosion of metals and alloys-Stress corrosion testing- Part3: Preparation and use of U bend specimens
[19] (何明山, 何叔麟, 纪晓春. GB/T15970.3-1995. 《金属和合金的腐蚀 应力腐蚀试验 第3部分: U型弯曲试样的制备和应用》)
[20] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in western China[J]. Corros. Sci., 2012, 59: 63-70
[21] Xiao J M,Cao C N. Material Corrosion Theory[M]. Beijing: Chemical Industry Press, 2002: 69-84
[21] (肖纪美,曹楚南. 材料腐蚀学原理[M]. 北京: 化学工业出版社, 2002: 69-84)
[22] Meng F J. Influence of shaving on stress corrosion behavior of 690 TT alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
[22] (孟凡江. 划伤对690TT合金腐蚀和应力腐蚀行为的影响 [D]. 沈阳: 中国科学院金属研究所, 2011)
[23] Huang C L, Wan X P. Effect of axial stress on exfoliation corrosion of keel beam for aircraft B737CL[J]. Corros. Sci. Prot. Technol., 2011, 23(5): 440-444
[23] (黄昌龙, 万小朋. 正应力在波音737CL飞机龙骨梁剥蚀中的作用[J]. 腐蚀科学与防护技术, 2011, 23(5): 440-444)
[24] Wang B B, Wang Z Y, Han W, et al. Effects of magnesium chloride-based multi-component salts on atmospheric corrosion of aluminum alloy 2024[J]. Chin. J. Nonferrous Met., 2013, 23: 1199-1208
[25] Ge Z Z, Wexler A S, Johnston M V. Deliquescence behaviour of multicomponent aerosols[J]. J. Phys. Chem., 1998, 102: 173-180
[26] Nenes A, Pandis S N, Pilinis C. A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols[J]. Aquat. Geochem., 1998, 4: 123-152
[27] Xiao H S, Dong J L, Wang L Y, et al. Spatially resolved micro-raman observation on the phase separation of effloresced sea salt droplets[J]. Environ. Sci. Technol., 2008, 42: 8698-8702
[28] Wise M E, Biskos G, Martin S T, et al. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell[J]. Aerosol. Sci. Technol., 2005, 39: 8849-856
[29] Prosek T, Lversen A, Taxén C, et al. Low-temperature stress corrosion cracking of stainless steels on the atmosphere in the presence of chloride deposits[J]. Corrosion, 2009, 65: 105-117
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[8] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[9] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[10] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[11] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[12] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[13] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[14] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[15] 冯 勇 何德良 龚德胜 李 菲 吴建新. 国产825合金的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 164-170.