Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (2): 81-85     
  研究报告 本期目录 | 过刊浏览 |
氢对X70管线钢预裂纹试样断裂性能的影响
王荣
西安石油大学材料科学与工程学院
EFFCTS OF HYDROGEN ON FRACTURE OF PRE-CRACKING SPECIMENS OF X70 PIPELINE STEEL
WANG Rong
西安石油大学材料科学与工程学院
全文: PDF(1018 KB)  
摘要: 将X70管线钢单边预裂纹试件在0.5 mol/L H2SO4溶液中充氢至饱和,然后在空气中拉伸至断裂,获得裂纹体的条件断裂韧性。当固溶氢含量 < 0.978×10-4 mass%时,氢使裂纹体断裂韧性提高11.8%;固溶氢含量 > 0.978×10-4 mass%时,裂纹体断裂韧性随氢含量线性降低;断裂特征为典型的韧窝断口,但韧窝直径随氢含量的增加逐渐变小。在动态充氢条件下进行慢应变速率拉伸实验,氢使裂纹体断裂韧性显著降低,裂纹体断裂韧性随充氢电流密度I的幂函数而线性降低,断裂特征为典型的准解理断口。
关键词 裂纹体断裂韧性X70管线钢    
Abstract:The pre-cracking specimens of X70 pipeline steel were pre-charged with hydrogen in 0.5mol/L H2SO4 solution,and then extended in air to fracture in order to obtain the fracture roughness of the cracking bodies. When the hydrogen concentration was less than 0.978×10-4 mass%,the hydrogen made the fracture roughness in?鄄crease 11.8%. When the hydrogen concentration was more than 0.978×10-4 mass%, the hydrogen made the frac?鄄ture roughness decrease according to the linear relationship of the hydrogen concentration.The fracture surfaces were characteristic of the dimple and the diameter of the dimple varied smaller with the gradual increase of the hydrogen concentration. On the slow strain rate tension tests with dynamically charging with hydrogen in 0.5mol/L H2SO4 solution,the fracture roughness decreased considerably.The fracture roughness for hydrogen-induced cracking decreased linearly with exponential function of charging current density. The hydrogen-induced fracture had appearance of the quasi-cleavage.
Key wordshydrogen    cracking bodies    fracture roughness    pipeline steel
收稿日期: 2006-09-25     
通讯作者: 王荣      E-mail: wangrong@xsyu.edu.cn,rongw123@163.com
Corresponding author: WANG Rong     E-mail: wangrong@xsyu.edu.cn,rongw123@163.com

引用本文:

王荣 . 氢对X70管线钢预裂纹试样断裂性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 81-85 .
WANG Rong. EFFCTS OF HYDROGEN ON FRACTURE OF PRE-CRACKING SPECIMENS OF X70 PIPELINE STEEL. J Chin Soc Corr Pro, 2008, 28(2): 81-85 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I2/81

[1]Delafosse D,Magnin T.Hydrogen induced plasticity in stress cor-rosion cracking of engineering systems[J].Eng.Fract.Mech.,2001,68(6):693-729
[2]Radkevych O I,Pyasetskyi O S,Vasylenko I I.Corrosion-me-chanical resistance of pipe steel in hydrogen-sulfide containingmedia[J].Mater.Sci.,2000,36(3):425-430
[3]Thomas R L S,Scully J R,Gangloff R P.Internal hydrogen em-brittlement of ultrahigh-strength aermet 100 steel[J].Metall.Mater.Trans.A,2003,34(2):327-344
[4]Yu G H,Cheng Y H,Chen H X,et al.Hydrogen-induced failureof oil-well tubular steel C90[J].Acta Metall.Sin.,1996,32(6):617-623(于广华,程以环,陈红星等.C90油管钢的氢损伤[J].金属学报,1996,32(6):617-623)
[5]Chu W Y.A review of mechanisms of hydrogen-induced cracking and stress corrosion cracking[J].Corros.Sci.Prot.Tech.,1993,5(3):151-157(褚武扬.氢致开裂和应力腐蚀机理的前沿问题[J].腐蚀科学与防护技术,1993,5(3):151-157)
[6]Chu W Y,Qiao L J,Chen Q Z,et al.Fracture and Environmen-tal Fracture[M].Beijing:Science Press,2000(褚武扬,乔利杰,陈奇志等.断裂与环境断裂[M].北京:科学出版社,2000)
[7]Zhang T,Yao Y,Chu W Y,et al.Relationship between hydro-gen-induced additive stress and threshold cracking stress for apipeline steel[J].Acta Metall.Sin.,2002,38(8):844-848(张涛,姚远,褚武扬等.管线钢氢致附加应力与氢致门槛应力的相关性[J].金属学报,2002,38(8):844-848)
[8]Chen L,Liu M Z,Su W H,et al.A study of hydrogen effect ondeformation and fracture microprocess in pure iron[J],Acta Met-all.Sin.,1981,17(5):541-548(陈廉,刘民治,苏万和等.氢对纯铁变形和断裂微观过程影响研究[J].金属学报,1981,17(5):541-548)
[9]Wu Y C,Chang X R,Tian Z T,et al.Hydrogen damage in highpurity iron[J].Acta Metall.Sin.,1992,28(2):A91-A94(吴奕初,常香荣,田中卓等.高纯铁中氢损伤规律的研究[J].金属学报,1992,28(2):A91-A94)
[10]Maier H J,Popp W,Kaesche H.Effect of hydrogen on ductilefracture of a spheroidized low alloy steel[J].Mater.Sci.Eng.A,1995,191(1-2):17-26q
[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[9] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[12] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[14] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[15] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.