|
|
显微组织对X100管线钢氢致开裂及氢捕获行为影响 |
袁玮,黄峰( ),甘丽君,戈方宇,刘静 |
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 |
|
Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel |
YUAN Wei,HUANG Feng( ),GAN Lijun,GE Fangyu,LIU Jing |
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
Wei YUAN,
Feng HUANG,
Lijun GAN,
Fangyu GE,
Jing LIU.
Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 536-542.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.168
或
https://www.jcscp.org/CN/Y2019/V39/I6/536
|
[1] | Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216 | [2] | Saleh A A, Hejazi D, Gazder A A, et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters [J]. Int. J. Hydrog. Energy, 2016, 41: 12424 | [3] | Amin L V, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel [J]. Mater. Sci. Eng., 2017, A679: 87 | [4] | Hejazi D, Haq A J, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking [J]. Mater. Sci. Eng., 2012, A551: 40 | [5] | Qu Y M, Huang F, Liu J, et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel [J]. Chin. J. Mater. Res., 2010, 24: 508 | [5] | (曲炎淼, 黄峰, 刘静等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响 [J]. 材料研究学报, 2010, 24: 508) | [6] | Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels [J]. Eng. Fail. Anal., 2013, 33: 163 | [7] | Li J, Gao X H, Du L X, et al. Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel [J]. J. Mater. Sci. Technol., 2017, 33: 1504 | [8] | Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, A528: 4927 | [9] | Peng X H, Liu J, Huang F, et al. Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel [J]. Corros. Prot., 2013, 34: 882 | [9] | (彭先华, 刘静, 黄峰等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响 [J]. 腐蚀与防护, 2013, 34: 882) | [10] | Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715 | [11] | Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879 | [12] | Du C W, Zhao T L, Liu Z Y, et al. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution [J]. Int. J. Miner. Metall. Mater., 2016, 23: 176 | [13] | Gan L J, Huang F, Liu J Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrog. Energy, 2018, 43: 2293 | [14] | NACE TM0284-2011. Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking [S]. 2011 | [15] | Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201 | [16] | Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrog. Energy, 2016, 41: 4185 | [17] | Huang F, Liu S, Liu J, et al. Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment [J]. Mater. Sci. Eng,, 2014, A591: 159 | [18] | Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2002, 77: 447 | [19] | Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 92 | [19] | (褚武杨, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 92) | [20] | Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2017, 42: 25102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|