Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 158-166    DOI: 10.11902/1005.4537.2017.043
  研究报告 本期目录 | 过刊浏览 |
X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究
廖梓含, 宋博, 任泽, 何川, 陈旭()
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions
Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN()
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1975 KB)   HTML
摘要: 

采用动电位极化、电化学阻抗谱和Mott-Schottky方法研究了溶液浓度和Cl-对X70钢母材及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为影响。结果表明,X70钢母材和焊缝在0.1~1.0 mol/L (Na2CO3+NaHCO3) 溶液中都能形成稳定的钝化区间。随着溶液浓度的增大,钝化膜的稳定性增加。X70管线钢母材和焊缝的钝化膜均呈现出n型半导体特征,且施主密度与维钝电流密度的变化趋势相同。Cl-在1.0 mol/L (Na2CO3+NaHCO3) 溶液中,对焊缝组织的吸附现象存在显著特征,主要吸附于氧空位处。

关键词 X70管线钢溶液浓度钝化膜焊缝缺陷密度    
Abstract

The electrochemical corrosion behavior of the matrix and weld seam of X70 steel in Na2CO3+NaHCO3 solution was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy and Mott-Schottky technique. Results showed that the passive film could form on both the matrix and weld seam of X70 steel in solutions with the concentration of Na2CO3+NaHCO3 within a range of 0.1~1.0 mol/L. The stability of passive films increased with the concentration of Na2CO3+NaHCO3. The passive films form on both the matrix and weld seam of X70 steel behave as a n-type semiconductor, the donor density follows the same trend as the passivity current density. There is a notable feature that the Cl- adsorbed onto the oxygen vacancies on the weld seam in the solution of 1 mol/L carbonate/bicarbonate.

Key wordsX70 pipeline steel    solution concentration    passive film    weld seam    defects density
收稿日期: 2017-03-17     
基金资助:国家自然科学基金 (51574147) 和辽宁省教育厅发展基金 (L2017LZD004)
作者简介:

作者简介 廖子涵,女,1990年生,硕士生

引用本文:

廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 158-166.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.043      或      https://www.jcscp.org/CN/Y2018/V38/I2/158

Zone C Si Mn S Si Cr Al V Mo Cu P Ni Fe
Metal 0.045 0.24 0.48 0.010 0.004 0.031 0.01 0.005 0.25 0.015 0.017 0.160 Bal.
Weld 0.075 0.29 1.31 0.004 0.004 0.045 --- --- 0.03 0.035 0.014 0.016 Bal.
表1  X70钢及其焊缝化学成分
图1  X70母材及焊缝金相显微组织
图2  X70钢母材和焊缝在无Cl-的高pH值溶液中的极化曲线
Zone Concentration / molL-1 Ecorr / V(SCE) Ec1 / V(SCE) Eb / V(SCE) Ic / mAcm-2 Ip / μAcm-2
Metal 0.1 -0.83 -0.67 0.86 0.148 1.44
0.5 -0.87 -0.68 0.86 0.257 1.07
1.0 -0.87 -0.68 0.86 0.562 1.07
Weld seam 0.1 -0.79 -0.67 0.83 0.412 5.93
0.5 -0.86 -0.67 0.84 0.173 6.06
1.0 -0.86 -0.64 0.85 1.172 11.48
表2  X70钢在无Cl-的高pH值溶液中极化曲线拟合结果
图3  X70钢母材和焊缝在含Cl-的高pH值溶液中的极化曲线
Zone NaHCO3+Na2CO3 / molL-1 Rf / V(SCE) Ec1 / V(SCE) Eb / V(SCE) Ic / mAcm-2 Ip / μAcm-2
Metal 0.1 -0.79 -0.74 0.012 0.105 31.60
0.5 -0.85 -0.69 0.869 0.457 14.80
1.0 -0.87 -0.65 0.853 0.513 10.10
Weld seam 0.1 -0.81 -0.66 -0.010 0.132 6.66
0.5 -0.85 -0.69 0.860 0.457 14.12
1.0 -0.88 -0.72 0.780 5.400 8.70
表3  X70钢在含Cl-的高pH值溶液中极化曲线拟合结果
图4  X70钢母材和焊缝在无Cl-的高pH值溶液中的EIS
图5  X70钢母材和焊缝在含Cl-的高pH值溶液中的EIS
图6  X70钢在高pH值溶液中EIS的等效电路
Zone NaHCO3+Na2CO3molL-1 NaClmolL-1 RsΩcm-2 Qf104 Fcm-2 n RfΩcm-2 Qdl104 Fcm-2 n RctΩcm-2 w
Matel 0.1 0 3.12 1.74 0.07 357.8 31.60 0.40 450.1 ---
0.5 0 5.84 2.27 0.87 366.7 10.90 0.39 515.1 ---
1.0 0 18.96 3.77 0.81 822.4 26.56 0.58 1005.6 ---
0.1 0.05 3.43 1.02 0.41 105.7 2.13 0.57 376 0.034
0.5 0.05 4.17 1.33 0.82 343.0 3.0 1 683.3 ---
1.0 0.05 8.45 3.04 0.49 498.5 3.30 0.87 908.1 ---
Weld seam 0.1 0 3.62 9.85 0.38 0.061 2.57 0.87 449.3 ---
0.5 0 6.68 1.75 0.86 106.8 6.76 0.36 498.8 ---
1.0 0 23.58 2.65 0.84 404.8 22.49 0.55 982.5 ---
0.1 0.05 1.67 2.65 0.74 60.2 4.87 0.56 345.1 0.243
0.5 0.05 5.05 1.15 0.92 123.8 5.44 0.96 520.2 ---
1.0 0.05 8.43 3.02 0.41 369.8 3.29 0.72 891.9 ---
表4  X70钢在高pH值溶液中电化学阻抗拟合结果
图7  X70钢母材和焊缝在高pH值溶液中的M-S曲线
图8  母材和焊缝施主密度ND与Ip的变化关系图
[1] Eliyan F F, Alfantazi A.Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃-An electrochemical evaluation[J]. Corros. Sci., 2013, 74: 297
[2] Lu B T.Further study on crack growth model of buried pipelines exposed to concentrated carbonate-bicarbonate solution[J]. Eng. Fract. Mech., 2014, 131: 296
[3] Liu Z Y, Wang X Z, Du C W, et al.Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J]. Mater. Sci. Eng., 2016, A658: 348
[4] Cui Z Y, Liu Z Y, Wang L W, et al.Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment[J]. Mater. Sci. Eng., 2016, A677: 259
[5] Lavigne O, Gamboa E, Costin W, et al.Microstructural and mechanical factors influencing high pH stress corrosion cracking susceptibility of low carbon line pipe steel[J]. Eng. Fail. Anal., 2014, 45: 283
[6] Liu Z Y, Li X G, Du C W.Non-equilibrium electrochemical processes during stress corrosion cracking of pipeline steels in an acidic soil environment [A]. The 6th China Corrosion Conference[C]. Yinchuan, 2011: 58(刘智勇, 李晓刚, 杜翠薇. 管线钢应力腐蚀的非稳态电化学过程分析 [A]. 第六届全国腐蚀大会论文集[C]. 银川, 2011: 58)
[7] Chen X, Liang P, Li X G, et al.Factors influencing stress corrosion cracking of pipeline steels[J]. Equip. Environ. Eng., 2007, 4(3): 21(陈旭, 梁平, 李晓刚等. 管线钢应力腐蚀开裂的影响因素[J]. 装备环境工程, 2007, 4(3): 21)
[8] Huang F, Yu L, Liu J, et al.Relative function of influence factors on pitting sensitivity of X70 steel in a simulated soil solution[J]. Corros. Sci. Prot. Technol., 2010, 22: 166(黄峰, 余璐, 刘静等. X70钢在模拟土壤溶液中点蚀敏感性影响因素交互作用研究[J]. 腐蚀科学与防护技术, 2010, 22: 166)
[9] Parkins R N.Current topics in corrosion: Factors influencing stress corrosion crack growth kinetics[J]. Corrosion, 1987, 43: 130
[10] Mao X, Liu X, Revie R W.Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions[J]. Corrosion, 1994, 50: 651
[11] Torres-Islas A, Gonzalez-Rodriguez J G, Uruchurtu J, et al. Stress corrosion cracking study of microalloyed pipeline steels in dilute NaHCO3 solutions[J]. Corros. Sci., 2008, 50: 2831
[12] Wang G F, Chen X, Zhao Y, et al.Effect of temperature on electrochemical corrosion behavior of X70 pipeline steel in high pH solution[J]. Corros. Sci. Prot. Technol., 2015, 27: 226(王冠夫, 陈旭, 赵阳等. 温度对X70钢在高pH值溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2015, 27: 226)
[13] Mohorich M E, Lamb J, Chandra D, et al.Electrochemical studies on silicate and bicarbonate ions for corrosion inhibitors[J]. Metall. Mater. Trans., 2010, 41A: 2563
[14] Brossia C S, Cragnolino G A.Effect of environmental variables on localized corrosion of carbon steel[J]. Corrosion, 2000, 56: 505
[15] Alves V A, Brett C M A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS[J]. Electrochim. Acta, 2002, 47: 2081
[16] Saleem B, Ahmed F, Rafiq M A, et al.Stress corrosion failure of an X52 grade gas pipeline[J]. Eng. Fail. Anal., 2014, 46: 157
[17] Mustapha A, Charles E A, Hardie D.Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel[J]. Corros. Sci., 2012, 54: 5
[18] Kim S J, Okido M, Moon K M. The electrochemical study on mechanical and hydrogen embrittlement properties of HAZ part as a function of post-weld heat treatment in SMAW [J]. Surf. Coat. Technol., 2003, 169/170: 163
[19] Moon K M, Lee M H, Kim K J, et al. The effect of post-weld heat treatment affecting corrosion resistance and hydrogen embrittlement of HAZ part in FCAW [J]. Surf. Coat. Technol., 2003, 169/170: 675
[20] Hemmingsen T, Hovdan H, Sanni P, et al.The influence of electrolyte reduction potential on weld corrosion[J]. Electrochim. Acta, 2002, 47: 3949
[21] Papadakis G A.Major hazard pipelines: A comparative study of onshore transmission accidents[J]. J. Loss Prev. Process Ind., 1999, 12: 91
[22] Mitsui H, Takahashi R, Asano H, et al.Susceptibility to stress corrosion cracking for low-carbon steel welds in carbonate-bicarbonate solution[J]. Corrosion, 2008, 64: 939
[23] Zhang G A, Cheng Y F.Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution[J]. Electrochim. Acta, 2009, 55: 316
[24] Wang C X, Wu M, Chen X, et al.Electrochemical behavior of X80 steel and welding line in acid soil environment[J]. Corros. Prot., 2010, 31: 780(王成祥, 吴明, 陈旭等. X80钢及其焊缝组织在酸性土壤中的电化学行为[J]. 腐蚀与防护, 2010, 31: 780)
[25] Mohammadi F, Eliyan F F, Alfantazi A.Corrosion of simulated weld HAZ of API X-80 pipeline steel[J]. Corros. Sci., 2012, 63: 323
[26] Davenport A J, Oblonsky L J, Ryan M P, et al.The structure of the passive film that forms on iron in aqueous environments[J]. Electrochem. Soc., 2000, 147: 2162
[27] Lu Z P, Huang C B, Huang D L, et al.Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides[J]. Corros. Sci., 2006, 48: 3049
[28] Simard S, Drogowska M, Ménardh H, et al.Electrochemical behaviour of 1024 mild steel in slightly alkaline bicarbonate solutions[J]. J. Appl. Electrochem., 1997, 27: 317
[29] Castro E B, Valentini C R, Moina C A, et al.The influence of ionic composition on the electrodissolution and passivation of iron electrodes in potassium carbonate-bicarbonate solutions in the 8.4-10.5 pH range at 25 ℃[J]. Corros. Sci., 1986, 26: 791
[30] Xu C C, Chi L, Hu G.Electrochemical behavior of X70 pipeline steel in carbonate-bicarbonate solution[J]. Corros. Sci. Prot. Technol., 2004, 16: 268(许淳淳, 池琳, 胡钢. X70管线钢在CO32-/HCO3-溶液中的电化学行为研究[J]. 腐蚀科学与防护技术, 2004, 16: 268)
[31] Chen Y, Chen X, Liu T, et al.Effect of temperature on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution[J]. Corros. Prot., 2014, 35: 344(陈宇, 陈旭, 刘彤等. 温度对316L不锈钢在硼酸溶液中腐蚀电化学行为的影响[J]. 腐蚀与防护, 2014, 35: 344)
[32] Hamadou L, Kadri A, Benbrahim N.Impedance investigation of thermally formed oxide films on AISI 304L stainless steel[J]. Corros. Sci., 2010, 52: 859
[33] Li D G, Feng Y R, Bai Z Q, et al.Influences of temperature, pH value and chloride ion on the diffusivity of point defect in the passive film on X80 pipeline steel[J]. Acta Chim. Sin., 2008, 66: 1151(李党国, 冯耀荣, 白真权等. 温度、pH值和氯离子对X80钢钝化膜内点缺陷扩散系数的影响[J]. 化学学报, 2008, 66: 1151)
[34] Macdonald D D.The history of the point defect model for the passive state: A brief review of film growth aspects[J]. Electrochim. Acta, 2011, 56: 1761
[35] Amri J, Souier T, Malki B, et al.Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films[J]. Corros. Sci., 2008, 50: 431
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[4] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[5] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[6] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[7] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[8] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[11] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[12] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[13] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[14] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.