Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 463-470    DOI: 10.11902/1005.4537.2017.168
  研究报告 本期目录 | 过刊浏览 |
电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究
焦明远1,2, 金伟良1,2, 毛江鸿2(), 李腾3, 夏晋1
1 浙江大学结构工程研究所 杭州 310058
2 浙江大学宁波理工学院 宁波 315100
3 中国能建集团浙江省电力设计院有限公司 杭州 310012
Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation
Mingyuan JIAO1,2, Weiliang JIN1,2, Jianghong MAO2(), Teng LI3, Jin XIA1
1 Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
3 China Energy Engineering Group Zhejiang Electric Design Institute Co., LTD., Hangzhou 310012, China
全文: PDF(3480 KB)   HTML
摘要: 

分析论证了动电位极化法测量混凝土中钢筋析氢电流密度的合理性,并测试了不同水灰比的混凝土试件中钢筋的析氢电流密度大小。结果表明,混凝土试件的水灰比越大,钢筋的析氢电流密度越小,析氢反应越容易发生,因此在电化学修复中对不同水灰比的混凝土结构不宜采用统一的析氢电流密度作为析氢控制条件。

关键词 水灰比Nernst方程析氢反应动电位极化曲线电流密度    
Abstract

Electrochemical remediation is one important method to improve the durability of the existed reinforced concrete structural parts. However, the hydrogen evolution during the reparative process restricts the applied range of electrochemical remediation. The Nernst formula indicated that the equilibrium potential of hydrogen evolution is related to reactant concentration,product concentration and temperature. Accordingly,the equilibrium potential of hydrogen evolution of rebar as a cathode during the electrochemical remediation is related to the inner environment of the concrete under repair. The rationality of measuring current density of hydrogen evolution by potentiodynamic polarization curve is demonstrated in this paper. Then the current density of hydrogen evolution of the rebar embedded in concretes with different water-cement ratio (W /C) is measured. Results indicate that the current density of hydrogen evolution is lower for the rebar embedded in the concrete with lower W /C ratio. Therefore, it is not suitable to adopt a common current density value as a specified index for the controlling of hydrogen evolution during the electrochemical remediation of different concretes.

Key wordswater-cement ratio    Nernst equation    hydrogen evolution    potentiodynamic polarization curve    current density
收稿日期: 2017-10-11     
ZTFLH:  TU375  
基金资助:国家自然科学基金 (51638013和51578490),浙江省自然科学基金 (LY18E080003) 及宁波市自然科学基金(2016A610215和2017A610313)
作者简介:

作者简介 焦明远,男,1992年生,硕士生

引用本文:

焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 463-470.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.168      或      https://www.jcscp.org/CN/Y2018/V38/I5/463

图1  有浓差极化时的阴极过电位曲线[13]
图2  混凝土结构中钢筋的阴极极化曲线[13]
图3  试件尺寸示意图
W/C Water Cement Fine aggregate Coarse aggregate
0.43 188.7 500 592.6 1119
0.48 187 448 646.3 1118.7
0.53 185.3 406 669 1109.7
表1  混凝土试件配合比
图4  动电位极化曲线测定实验装置
图5  气孔扫描测试图
图6  电镜扫描观察与分析图
图7  不同水灰比试样的阴极极化曲线
图8  不同水灰比试样阴极极化曲线一阶导数
Specimen W/C=0.43 W/C=0.48 W/C=0.53
1 0.61 0.37 0.19
2 0.66 0.35 0.20
3 0.50 0.31 0.21
4 0.51 0.31 0.27
5 0.50 0.56 0.22
Average value 0.55 0.38 0.22
Standard deviation 0.0743 0.1039 0.0311
表2  不同水灰比 (W/C) 各试块析氢电流密度值
图9  不同水灰比试件pH值图
图10  不同水灰比试件钢筋表面气孔分布平均图
图11  不同水灰比试件在低倍率下的SEM像
图12  不同水灰比试件在高倍率下SEM像
[1] Jin W L.Corroded Concrete Structures [M]. Beijing: Science Press, 2011(金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011)
[2] Vera R, Villarroel M, Carvajal A M, et al.Corrosion products of reinforcement in concrete in marine and industrial environments[J]. Mater. Chem. Phys., 2009, 114: 467
[3] Fajardo G, Escadeillas G, Arliguie G.Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water[J]. Corros. Sci., 2006, 48: 110
[4] Kim S J, Jang S K, Kim J I.Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel[J]. Met. Mater. Int., 2005, 11: 63
[5] Siegwart M, Lyness J F, McFarland B J, et al.The effect of electrochemical chloride extraction on pre-stressed concrete[J]. Construct. Build. Mater., 2005, 19: 585
[6] Jin W L, Chen J Y, Mao J H, et al.The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Eng. Mech., 2016, 33(2): 1(金伟良, 陈佳芸, 毛江鸿等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1)
[7] Zheng L, Wei J X, Yu Q J, et al.Electrode reaction during electrochemical chloride extraction of reinforced concrete[J]. J. Chin. Ceram. Soc., 2009, 37: 1190(郑靓, 韦江雄, 余其俊等. 电化学除盐过程中钢筋表面发生的电极反应[J]. 硅酸盐学报, 2009, 37: 1190)
[8] Fujimoto N, Sawada T, Tada E, et al.Effect of PH on hydrogen absorption into steel in neutral and alkaline solutions[J]. Mater. Trans., 2017, 58: 211
[9] Xu Y Y, Wang Q F, Luo Q.Electrochemical corrosion behaviors of hot-dip galvanized steel in simulated concrete pore solutions[J]. J. Fuzhou Univ.(Nat. Sci. Ed.), 2008, 36: 424(徐玉野, 王全凤, 罗漪. 热镀锌钢在模拟混凝土孔隙液中电化学腐蚀行为[J]. 福州大学学报(自然科学版), 2008, 36: 424)
[10] Carneiro-Neto E B, Lopes M C, Pereira E C. Simulation of interfacial PH changes during hydrogen evolution reaction[J]. J. Electroanal. Chem., 2016, 765: 92
[11] Boiadjieva-Scherzer T, Kronberger H, Fafilek G, et al.Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings[J]. J. Electroanal. Chem., 2016, 783: 68
[12] Du M, Gao R J, Wei X J.Hydrogen evolution reaction of Ni-S ele-ctrodeposited cathode[J]. Chin. J. Power Sources, 2001, 25: 223(杜敏, 高荣杰, 魏绪钧. 电沉积Ni-S合金阴极析氢反应[J]. 电源技术, 2001, 25: 223)
[13] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed.,Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[14] Jin J, Wu G J, Weng J, et al.Experimental study on influence of cement water ratio on chloride diffusion coefficient and carbonation rate of concrete[J]. Bull. Chin. Ceram. Soc., 2011, 30: 943(金骏, 吴国坚, 翁杰等. 水灰比对混凝土氯离子扩散系数和碳化速率影响的试验研究[J]. 硅酸盐通报, 2011, 30: 943)
[15] Jin W L, Xue W, Chen J.Effecting coefficients for concrete structure durability design index[J]. J. Build. Struct., 2011, 32(12): 86(金伟良, 薛文, 陈驹. 海岸及近海混凝土材料耐久性设计指标的影响参数分析[J]. 建筑结构学报, 2011, 32(12): 86)
[16] Nesic S, Postlethwaite J, Olsen S.An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4): 280
[17] Yang Z Y.Studying the effect of cathodic polarization on the susceptibility of 907 steel to hydrogen embrittlement [D]. Qingdao: Ocean University of China, 2009(杨兆艳. 阴极极化对海水中907钢氢脆敏感性影响研究 [D]. 青岛: 中国海洋大学, 2009)
[18] Bennett J, Schue T J.Electrochemical chloride removal and protection of concrete bridge components: laboratory studies strategic highway research program [R]. Washington: National Research Council, 1993: 27
[19] García J, Almeraya F, Barrios C, et al.Effect of cathodic protection on steel-concrete bond strength using ion migration measurements[J]. Cem. Concr. Compos., 2012, 34: 242
[20] Wei J X, Wang X X, Zheng L, et al.Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction[J]. J. Wuhan Univ. Technol., 2009, 31(12): 30(韦江雄, 王新祥, 郑靓等. 电除盐中析氢反应对钢筋-混凝土粘结力的影响[J]. 武汉理工大学学报, 2009, 31(12): 30)
[21] Li T, Jin W L, Xu C, et al.Determination of steady critical current density of hydrogen evolution during electrochemical repair process of reinforced concrete[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 382(李腾, 金伟良, 许晨等. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37: 382)
[22] Ren X P, Ren X D, Pang L Q, et al.MoS2/sulfur and nitrogen co-doped reduced grapHene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution[J]. Int. J. Hydrog. Energy, 2016, 41: 916
[23] Lian H Z, Tong L, Chen E Y.Fundamentals of Phase Study of Building Materials [M]. Beijing: Tsinghua University Press, 1996(廉慧珍, 童良, 陈恩义. 建筑材料物相研究基础 [M]. 北京: 清华大学出版社, 1996)
[24] Zhou L X, Wang Q C, Zhang F Q.Effect of mineral admixture and pore structure on the permeability of concrete[J]. J. Hydroelectric Eng., 2010, 29(3): 196(周立霞, 王起才, 张粉芹. 矿物掺合料和孔结构对混凝土抗渗性的影响[J]. 水力发电学报, 2010, 29(3): 196)
[1] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[2] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[3] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[6] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[7] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[8] 王勇, 田颖, 郭泉忠, 郭兴华, 杜克勤, 王福会. 阴极电流密度对LY12铝合金微弧氧化膜致密性的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 475-480.
[9] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[10] 李成杰,杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[11] 梅天庆,鱼光楠,贺利敏,裴玉汝. 离子液体AlCl3-[bmim]Cl中电沉积铝的研究[J]. 中国腐蚀与防护学报, 2011, 31(4): 319-328.
[12] 刘佐嘉,程学群,刘小辉,李晓刚. 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析[J]. 中国腐蚀与防护学报, 2010, 30(4): 273-277.
[13] 宋玉苏; 张燕; 周立清 . 强碱性介质铝阳极析氢影响因素研究[J]. 中国腐蚀与防护学报, 2006, 26(4): 237-240 .
[14] 王燕华; 王佳 . 电流密度对AZ91D镁合金微弧氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2005, 25(6): 332-335 .
[15] 吴建华;陈仁兴;刘光洲;陈光章;王志学;郭卫华;张殿平;运德才;邹立卿. 台洲海轮海水压载舱的牺牲阳极法阴极保护[J]. 中国腐蚀与防护学报, 1998, 18(4): 297-301.