Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (1): 25-29     
  研究报告 本期目录 | 过刊浏览 |
309不锈钢纳米涂层在酸性溶液中的电化学腐蚀行为
叶威
中科院金属研究所
Effect of nanocrystallization on the electrochemical corrosion behavior of 309 stainless steel
中科院金属研究所
全文: PDF(1279 KB)  
摘要: 用动电位极化、恒电位极化及交流阻抗技术研究了309不锈钢及其溅射纳米涂层在0.25 mol/L Na2SO4 + 0.05 mol/L H2SO4 和0.5 mol/L NaCl + 0.05 mol/L H2SO4溶液中的电化学腐蚀行为。结果表明,在0.25 mol/L Na2SO4 + 0.05 mol/L H2SO4溶液中,纳米涂层和不锈钢形成的钝化膜的抗腐蚀能力差别较小;而在0.5 mol/L NaCl + 0.05 mol/L H2SO4溶液中,纳米涂层的耐点蚀性能有了很大提高,这是由于纳米化使涂层表面形成的钝化膜更加致密、更加稳定;同时,通过容抗测量研究了纳米涂层和不锈钢钝化膜的电子结构,并提出了相应的腐蚀机制。
关键词 纳米涂层309不锈钢点蚀钝化膜容抗测量    
Abstract:Nanocrystallized 309 stainless steel coating has been fabricated on glass substrate by DC magnetron sputtering. The coating, with an average grain size less than 50 nm, had ferritic (bcc) structure rather than the austenitic (fcc) structure of the bulk steel. The electrochemical corrosion behavior of the nano-crystalline (NC) coating and the bulk steel in solutions of 0.25 mol/L Na2SO4 + 0.05 mol/L H2SO4 and 0.5 mol/L NaCl + 0.05 mol/L H2SO4 was investigated by using potentiodynamic polarization,potentiostatic polarization and capacitance mea?鄄surement. The results showed that the corrosion behavior of the NC 309SS coating and 309SS bulk steel depend?鄄ed on the composition of the solutions. In the Na2SO4 solution there was only a little difference between the corro?鄄sion resistance of the passive films on the NC coating and the bulk steel. However, in the solution with chloride ions, the localized corrosion resistance of 309SS was greatly enhanced by nanocrystallization due to the formation of a compact and stable passive film on the NC coating. The electronic structure of the passive film formed on the NC coating and on the bulk steel was analyzed by means of capacitance measurements, and a corrosion mecha?鄄nism is proposed.
Key words
收稿日期: 2006-06-19     
通讯作者: 叶威     E-mail: weiye@imr.ac.cn

引用本文:

叶威 . 309不锈钢纳米涂层在酸性溶液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(1): 25-29 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I1/25

[1]Frankel G S.The growth of2-D pits in thin film aluminum[J].Corros.Sci.,1990,30:1203-1218
[2]Frankel G S,Fukovic J O,Brusic V,et al.Pit growth in NiFe thin films[J].J.Electrochem.Soc.,1992,139:2196-2201
[3]Frankel F S,Newman R C,Jahnes C V,et al.On the pitting resis-tance of sputter-deposited aluminum alloys[J].J.Electrochem.Soc.,1993,140:2192-2197
[4]Fujimoto S,Hayashida H,Shibata T.Extremely high corrosion re-sistance of thin film stainless steels deposited by ion beam sputter-ing[J].Mater.Sci.Eng.,1999,A267:314-318
[5]Liu D,Wang F,Cao C.The pitting corrosion resistance of micro-crystalline coatings of sputtered321stainless steel[J].Corrosion,1990,46:975-977
[6]Leinartas K,Samuleviciene M,Bagdonas A,et al.Structural and anticorrosive properties of magnetron-sputtered Fe-Cr-Ni and Fe-Cr-Ni-Ta alloy films[J].Surf.Coat.Technol.,2003,168:70-77
[7]Galvele J R,Torresi R,Carranza R.Passivity breakdown,its rela-tion to pitting and stress-corrosion-cracking processes[J].Corros.Sci.,1990,31:563-571
[8]Cheng Y F,Luo J L.A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions[J].Appl.Surf.Sci.,2000,167:113-121
[9]Tsuchiya H,Fujimoto S.Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution[J].Electrochim.Acta,2002,47:4357-4366
[10]Ferreira M G S,Hakiki N E,Goodlet G,et al.Influence of the temperature of film formation on the electronic structure of oxide films formed on304stainless steel[J].Electrochim.Acta,2001,46:3767-3776
[11]Chao C Y,Lin L F,MacDonald D D.A point defect model for anodic passive film[J].J.Electrochem.Soc.,1981,128:1191-1193
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.