Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (3): 151-155     
  研究报告 本期目录 | 过刊浏览 |
稀土铈和镧对碳钢在氯化钠溶液中缓蚀机理的研究
汪兵; 刘清友; 王向东; 贾书君; 董瀚
钢铁研究总院
The Study of Inhibitive Corrosion Mechanism of Ce-ion and La-ion for Carbon Steel In NaCl Solution
;;;;
钢铁研究总院
全文: PDF(269 KB)  
摘要: 采用盐水滴腐蚀试验、腐蚀产物SEM及XPS分析、极化曲线测试分别研究了Ce3+和La3+对碳钢在氯化钠溶液中的缓蚀机理,并利用热力学数据绘制了Ce-H2O及La-H2O二元电位-pH相图。结果表明Ce3+和La3+能够在pH值较高的阴极区沉淀,阻碍O及电子在碳钢表面和溶液之间的转移和传递,通过抑制阴极反应从而减缓腐蚀的进行。热力学计算及电位 - pH图表明Ce3+在有氧时可被氧化成沉淀倾向更强的Ce4+,在酸性溶液中Ce4+化合物的稳定性要高于La3+化合物,因此Ce3+的缓蚀效果要好于La3+。
关键词 稀土缓蚀剂阴极沉淀电位-pH图    
Abstract:The effect of Ce-ion and La-ion inhibiting the corrosion of steel in NaCl solution has been investigated by salt water droplet test, corrosion production micro-analysis and electrochemistry test. The potential-pH diagram of RE-H2O was also used to investigate the chemical stability of various kinds of RE compound. The results showed that oxide and hydrate of RE deposited in the cathodal area where the pH value was relatively high and inhibited the corrosion of steel by blocking the transmission of O2 and electron between the cathodal area and solution. The potential-pH diagram and thermodynamics calculation showed the compound of Ce was more stable than compound of la in theacid solution and suggested that the ability of inhibition corrosion of Ce-ion is better than that of la-ion.
Key wordsRare earth    Corrosion inhibitor    cathodal deposit    potential-pH diagram
收稿日期: 2005-10-27     
ZTFLH:  TG174。42  
通讯作者: 汪兵      E-mail: wbgyzy@126.com

引用本文:

汪兵; 刘清友; 王向东; 贾书君; 董瀚 . 稀土铈和镧对碳钢在氯化钠溶液中缓蚀机理的研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 151-155 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I3/151

[1]Hinton B R W,Arnott D R,Ryan N E.The inhibition of aluminumalloy corrosion by cerium cations[J].Meter.Forum,1984,7(4):211-217
[2]Hinton B R W.Ceriumconversion coating for the corrosion protectionof aluminum[J].Mater.Forum,1986,9(3):162-173
[3]Arnott D R.Cationic film forming inhibitors for the corrosion protec-tion of AA7075 aluminum alloy in chloride solutions[J].Mater.Per-formance,1987,26(8):42-47
[4]Arnott D R.Cationic film forming inhibitors for the protection ofAA7075 aluminum alloy against corrosion in aqueous chloride solu-tions[J].Corrosion,1989,45(1):12-19
[5]Goldie B P F,McCarroll J J.Inhibiting metal corrosion in aqueoussystems[P].Australian Patent,AU-32947/84,1984
[6]Liu B S.Cerium conversion coating on Al and its alloys[J].Mater.Prot.,1992,25(5):16-19(刘伯生.铝及铝合金上铈转化膜的研究[J].材料保护,1992,25(5):16-19)
[7]Li J Q,Lu C Y,Gao LS,et al.Corrosion resistant film of cerium richcoating on aluminium alloys[J].J.Univ.Sci..Technol.Beijing,1995,17(6):584-589(李久青,卢翠英,高陆生等.铝合金表面稀土铈耐蚀膜[J].北京科技大学学报,1995,17(6):584-589)
[8]Yu X W,Zhou D R,Yin Z D,et al.Rare earth metal conversion coat-ing on aluminum[J].Chin.J.Nonferr.Metals.,1999,9(1):73-78(于兴文,周德瑞,尹钟大等.铝合金表面三价稀土钝化膜的研究[J].中国有色金属学报,1999,9(1):73-78)
[9]Fang J L,Wang J K,Liu Q,et al.XPS and AES studies of a rareearths conversion coating on carbon steel[J].J.Chin.Soc.RareEarths,2001,12(1):38-41(方景礼,王济奎,刘琴等.碳钢表面稀土转化膜的XPS和AES研究[J].中国稀土学报,2001,12(1):38-41)
[10]Li G Q,Li D,Li J Q,et al.Cerium conversion coatings formed onanodized aluminum by cathodic electrolysis[J].J.Chin.Soc.Cor-ros.Prot.,2001,21(3):150-156(李国强,李荻,李久青等.铝合金阳极氧化膜上阴极电解沉积的稀土铈转化膜[J].中国腐蚀与防护学报,2001,21(3):150-156)
[11]Gu B S,Liu J H,Ji X C.Corrosion inhibition mechanism of cerium(Ⅲ)for aluminum alloy[J].J.Chin.Soc.Corros.Prot.,2006,26(1):53-58(顾宝珊,刘建华,纪小春.铈盐对铝合金的缓蚀机理研究[J].中国腐蚀与防护学报,2006,26(1):53-58)
[12]Rajendran N,Nishimura T.Monitoring of pHand chloride ion with-in the rust of low alloy steels under atmospheric corrosion environ-ment[A].CSM,ISIJ,KIMM.Second International Conference onAdvanced Structural Steels[C].Shanghai:2004,425-428
[13]Liang Y J,Che Y C.Thermodynamics Data Handbook of Mineral[M].Shenyang:Northeastern University Press,1994(梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994)
[14]Wu WC,Fong HQ,Wu KZ.Standard Data Handbook of ElectrodePotential[M].Beijing:Science Press,1991(吴维昌,冯洪清,吴开治.标准电极电位数据手册[M].北京:科学出版社,1991)
[15]Yin Y J.Concise Handbook of Physical Chemistry[M].Beijing:Higher Education Press,1988(印永嘉.物理化学简明手册[M].北京:高等教育出版社,1988)
[16]Yang D J,Shen Z S.Corrosion of Metal[M].Beijing:MetallurgicalIndustry Press,1999(杨德钧,沈卓身.金属腐蚀学[M].北京:冶金工业出版社,1999)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[12] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[15] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.