Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1041-1050     CSTR: 32134.14.1005.4537.2024.331      DOI: 10.11902/1005.4537.2024.331
  研究报告 本期目录 | 过刊浏览 |
N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响
李茂1, 邓轲2, 陈衍祥2, 刘中豪1, 李尚1, 郭宇婷1, 董选普1, 曹华堂1()
1 华中科技大学材料科学与工程学院 材料成形与模具技术全国重点实验室 武汉 430074
2 株洲瀚捷航空科技有限公司 株洲 412002
Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings
LI Mao1, DENG Ke2, CHEN Yanxiang2, LIU Zhonghao1, LI Shang1, GUO Yuting1, DONG Xuanpu1, CAO Huatang1()
1 State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Zhuzhou Hanjie Aviation Science & Technology Co., Ltd., Zhuzhou 412002, China
引用本文:

李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
Mao LI, Ke DENG, Yanxiang CHEN, Zhonghao LIU, Shang LI, Yuting GUO, Xuanpu DONG, Huatang CAO. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1041-1050.

全文: PDF(14657 KB)   HTML
摘要: 

采用多弧离子镀技术在TC4钛合金基底上制备了AlSiN纳米复合涂层,研究了沉积过程中氮气流量和靶基距参数对涂层结构及力学性能的影响,并评估了涂层的电化学腐蚀性能。结果表明:沉积参数的变化影响了AlSiN涂层的结晶生长模式,涂层在较远的靶基距和高氮气流量下倾向于柱状晶生长模式,结晶度较高;而在近距离及低氮气流量下则会获得晶粒细小或接近非晶的致密结构;在较远的靶基距和高氮气流量下,拥有较高结晶度的AlSiN涂层表现出较高的显微硬度和优良的力学性能。涂层的耐腐蚀性能受到涂层结晶生长模式和力学性能的综合影响,结晶方式影响着腐蚀介质的渗透与表面氧化膜的形成,力学性能则影响着涂层的强度及缺陷的产生。在0.15 L/min的氮气流量,180 mm的靶基距下制备的AlSiN涂层拥有最佳的抗腐蚀性能,腐蚀电流密度相比于TC4钛合金基底降低了一个数量级以上。

关键词 多弧离子镀AlSiN涂层耐腐蚀性能TC4钛合金    
Abstract

AlSiN nano-composite coatings were prepared on TC4 Ti-alloy substrate by using multi-arc ion plating technique. The influence of N2 flow rate and target-substrate distance on their microstructure, mechanical properties and corrosion resistance in 3.5%NaCl solution was investigated. The results show that the variation of plating process parameters influence the crystalline growth mode of the AlSiN coating. By longer target-substrate distances and higher N2 gas flow the prepared AlSiN coatings exhibited higher crystallinity via a columnar grain growth mode, while a dense coating of finer grains or amorphous structure was obtained by shorter distances and lower N2 gas flow rates. Comparatively, the AlSiN coating of higher crystallinity exhibits higher microhardness and excellent mechanical properties. The corrosion resistance of the coatings was influenced by the combined effects of crystallization growth mode and mechanical properties, namely the crystallization mode may affect the penetration of the corrosive medium and the formation of the surface oxide scale, while the mechanical properties may be related with the strength and the generation of defects of the coating. Electrochemical data indicate that the AlSiN nanocomposite coating prepared by a N2 flow of 0.15 L/min and a target-substrate distance of 180 mm exhibited the optimal corrosion resistance, showing one order of magnitude reduction in corrosion current density compared to that of the TC4 substrate.

Key wordsarc ion plating    AlSiN coating    corrosion resistance    TC4 Ti-alloy
收稿日期: 2024-10-09      32134.14.1005.4537.2024.331
ZTFLH:  TG174  
基金资助:辽宁省航发材料摩擦学重点实验室开放课题(LKLAMTF202503)
通讯作者: 曹华堂,E-mail:caoht@hust.edu.cn,研究方向为表面工程及涂层、增材制造
Corresponding author: CAO Huatang, E-mail: caoht@hust.edu.cn
作者简介: 李 茂,男,2001年生,硕士生
ProcedureCurrent / AAr flow L·min-1N2 gas flow L·min-1Chamber pressure / PaNegative bias / VRotational speed / r·min-1Temperature℃Time min
TiAlSi
Ar+ etching--0.05-1.040015-10
TiN layer70-0.050.102.05015-5
AlSiN layer-600.050.05-0.202.050520050
表1  AlSiN涂层沉积参数
图1  不同氮气流量下所制备AlSiN涂层形貌
图2  不同靶基距下所制备的AlSiN涂层形貌
图3  不同氮气流量和不同靶基距条件下所制备AlSiN涂层的掠入射XRD谱
图4  不同氮气流量和不同靶基距条件下所制备的AlSiN涂层元素组成
图5  不同氮气流量的和不同靶基距条件下所制备的AlSiN涂层的XPS谱
图6  不同氮气流量条件下所制备的AlSiN涂层力学性能
图7  不同靶基距条件下所制备AlSiN涂层的力学性能
图8  不同氮气流量下所制备AlSiN涂层的开路电位和极化曲线
ItemIcorr / 10-8 A·cm-2Ecorr / V
TC4 substrate60.55-0.39
0.05 L/min8.30-0.65
0.10 L/min20.64-0.47
0.15 L/min4.56-0.42
0.20 L/min10.73-0.42
表2  不同氮气流量下AlSiN涂层的极化曲线数据
图9  不同氮气流量下所制备AlSiN涂层的EIS谱图
图10  等效模拟电路
N2 / L·min-1Rs / Ω·cm2Qc / μF·cm-2ncRc / Ω·cm2Qdl / μF·cm-2ndlRct / Ω·cm2
0.0529.6492.1810.681133.64.6760.871.575 × 106
0.1019.9029.5420.62186.9822.2880.845.742 × 105
0.1515.7504.3590.74630.051.8420.722.301 ×106
0.2015.1429.6240.7875.529.8200.761.033 × 106
表3  不同氮气流量下所制备AlSiN涂层的等效电路拟合数据
图11  不同靶基距下所制备的AlSiN涂层的开路电位和极化曲线
ItemIcorr / 10-8 A·cm-2Ecorr / V
TC4 substrate60.55-0.39
340 mm4.56-0.42
260 mm4.58-0.38
180 mm2.65-0.35
表4  不同靶基距下AlSiN涂层的极化曲线数据
图12  不同靶基距下所制备的AlSiN涂层的EIS谱图
Distance / mmRs / Ω·cm2Qc / μF·cm-2ncRc / Ω·cm2Qdl / μF·cm-2ndlRct / Ω·cm2
18029.1532.1680.75998.410.8990.744.413 × 106
26028.2482.6770.68685.790.2990.813.549 × 106
34015.754.3590.74630.051.8420.722.301 × 106
表5  不同靶基距下AlSiN涂层的等效电路拟合数据
[1] Pradhan S K, Nouveau C, Vasin A, et al. Deposition of CrN coatings by PVD methods for mechanical application [J]. Surf. Coat. Technol., 2005, 200: 141
[2] Khamseh S, Araghi H. A study of the oxidation behavior of CrN and CrZrN ceramic thin films prepared in a magnetron sputtering system [J]. Ceram. Int., 2016, 42: 9988
[3] Dorcioman G, Socol G, Craciun D, et al. Wear tests of ZrC and ZrN thin films grown by pulsed laser deposition [J]. Appl. Surf. Sci., 2014, 306: 33
[4] Ding J C, Zhang T F, Mei H J, et al. Effects of negative bias voltage and ratio of nitrogen and argon on the structure and properties of NbN coatings deposited by HiPIMS deposition system [J]. Coatings, 2018, 8: 10
[5] Bendavid A, Martin P J, Takikawa H. The properties of nanocomposite aluminium-silicon based thin films deposited by filtered arc deposition [J]. Thin Solid Films, 2002, 420-421: 83
[6] Pélisson-Schecker A, Hug H J, Patscheider J. Morphology, microstructure evolution and optical properties of Al-Si-N nanocomposite coatings [J]. Surf. Coat. Technol., 2014, 257: 114
[7] Liu H, Tang W, Hui D, et al. Characterization of (Al, Si)N films deposited by balanced magnetron sputtering [J]. Thin Solid Films, 2009, 517: 5988
[8] Ding J C, Wang Q M, Liu Z R, et al. Influence of bias voltage on the microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique [J]. J. Alloy. Compd., 2019, 772: 112
[9] Musil J, Šašek M, Zeman P, et al. Properties of magnetron sputtered Al-Si-N thin films with a low and high Si content [J]. Surf. Coat. Technol., 2008, 202: 3485
[10] Gao Z H, Kulczyk-Malecka J, Liu H, et al. An amorphous SiAlN barrier coating against NaCl attack in humid air at elevated temperature [J]. Corros. Sci., 2022, 203: 110321
[11] Xu X, Li W F, Wan B B, et al. Extremely improved the corrosion resistance and anti-wear behavior of aluminum alloy in 3.5%NaCl solution via amorphous CrAlN coating protection [J]. Corros. Sci., 2024, 230: 111952
[12] Xu X H, Wu H S, Zhang C J, et al. Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering [J]. Thin Solid Films, 2001, 388: 62
[13] Rebouta L, Sousa A, Andritschky M, et al. Solar selective absorbing coatings based on AlSiN/AlSiON/AlSiO y layers [J]. Appl. Surf. Sci., 2015, 356: 203
[14] Yan Y L, Helfand M A, Clayton C R. Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS [J]. Appl. Surf. Sci., 1989, 37: 395
[15] Sharma N, Ilango S, Dash S, et al. X-ray photoelectron spectroscopy studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N 2 + ions: substrate temperature induced compositional variations [J]. Thin Solid Films, 2017, 636: 626
[16] Bermudo J, Osendi M I, Fierro J L G. Oxygen distribution in AlN and Si3N4 powders as revealed by chemical and spectroscopy techniques [J]. Ceram. Int., 2000, 26: 141
[17] Franklin G E, Rich D H, Hong H, et al. Interface formation and growth of InSb on Si(100) [J]. Phys. Rev., 1992, 45B: 3426
[18] Li X, Li C X, Chen C K, et al. Adherent and smooth diamond film deposited on stainless steel by using AlSiN interlayers [J]. Appl. Surf. Sci., 2019, 487: 464
[19] Bozhko I A, Rybalko E V, Kalashnikov M P, et al. Effect of aluminum content on the performance of coatings based on Al-Si-N [J]. Key Eng. Mater., 2016, 685: 591
[20] Kumar A, Li D Y. Can the H/E ratio be generalized as an index for the wear resistance of materials? [J]. Mater. Chem. Phys., 2022, 275: 125245
[21] Li Z C, Zhang Y, Wang K H, et al. Highly dense passivation enhanced corrosion resistance of Ti2AlC MAX phase coating in 3.5wt.%NaCl solution [J]. Corros. Sci., 2024, 228: 111820
[22] Wu Z, Hu J, Yu L, et al. Corrosion behavior investigation of gallium coating on magnesium alloy in simulated body fluid [J]. J. Mater. Res. Technol., 2023, 27: 225
[23] Wang Y X, Wang Y X, Chen C L, et al. Preparation of Zr/[Al(Si)N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345
[23] (王永欣, 汪艺璇, 陈春林 等. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性 [J]. 中国腐蚀与防护学报, 2022, 42: 345)
doi: 10.11902/1005.4537.2021.184
[24] Shi X W. Study of hard yet corrosion resistant for colorful coatings on magnesium alloy surface [D]. Chongqing: Southwest University, 2022
[24] (史训旺. 镁合金表面“防腐-增硬-显色”功能一体化涂层的研究 [D]. 重庆: 西南大学, 2022)
[25] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
[26] Geng S J, Wang F H, Zhu S L, et al. Hot corrosion behavior of K38G alloy and its sputtered nanocrystalline coating by pre-deposited sulfate at 900 ℃ [J]. Acta. Metall. Sin. (Eng. Lett.), 2002, 15: 119
[27] Xu Y K, Liang B J, Gao Y, et al. Pulse electrodeposition of a duplex-layer structured composite nickel-based coating with improved corrosion and abrasion resistance [J]. Ceram. Int., 2024, 50: 1051
[1] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[2] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[3] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[4] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[5] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[6] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[7] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[8] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[9] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[10] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[11] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[12] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[13] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[14] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[15] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.