Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 191-200     CSTR: 32134.14.1005.4537.2024.265      DOI: 10.11902/1005.4537.2024.265
  研究报告 本期目录 | 过刊浏览 |
FeCrMoSiB非晶涂层的耐磨耐蚀性能研究
梁玉伟1,2,3, 王婕1,2,3, 宋鹏1,2,3,4(), 黄太红1, 包宇旭5
1 昆明理工大学材料科学与工程学院 昆明 650093
2 昆明理工大学 先进金属凝固成形技术与装备国家地方联合工程研究中心 昆明 650093
3 云南省内燃机清洁排放技术国际联合研究开发中心 昆明 650093
4 昆明理工大学民航与航空学院 昆明 650500
5 云南锡业新材料有限公司 昆明 650500
Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating
LIANG Yuwei1,2,3, WANG Jie1,2,3, SONG Peng1,2,3,4(), HUANG Taihong1, BAO Yuxu5
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 National-Local Joint Engineering Research Center for Technology of Advanced Metallic Solidification Forming and Equiment, Kunming University of Science and Technology, Kunming 650093, China
3 Yunnan Provincial International Joint Research and Development Center for Clean Emission Technology of Internal Combustion Engine, Kunming 650093, China
4 Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China
5 Yunnan Tin New Materials Co., Ltd., Kunming 650500, China
引用本文:

梁玉伟, 王婕, 宋鹏, 黄太红, 包宇旭. FeCrMoSiB非晶涂层的耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
Yuwei LIANG, Jie WANG, Peng SONG, Taihong HUANG, Yuxu BAO. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 191-200.

全文: PDF(15051 KB)   HTML
摘要: 

利用超音速火焰喷涂制备FeCrMoBSi非晶涂层,探究了不同热处理温度对涂层微观结构及腐蚀磨损性能的影响,研究结果显示,未经热处理的非晶涂层展现出了优异的抗腐蚀性能,其孔隙率最低(2.45%)并且涂层中Cr2O3含量最高(76.51%),能够有效地保护基体。热处理后的涂层孔隙增大,裂纹拓展,为腐蚀溶液提供了扩散通道,降低了涂层的抗腐蚀能力。涂层摩擦磨损测试结果表明未经热处理的非晶涂层具有最小的磨损体积和最低的磨损率(1.784 × 10-5 mm3/(N·m)),但随热处理温度的升高,磨损体积和磨损率均增加。

关键词 非晶涂层热处理腐蚀性能磨损性能    
Abstract

Herein, An amorphous coating of FeCrMoBSi (namely Fe-18%-20%Cr, 7%-8%Mo, 5%-6%Si and 4%-5%B, in mass fraction) on 310S stainless steel was prepared by high velocity oxy-fuel (HVOF) spraying technique. The corrosion resistance in 3.5%NaCl solution and friction-wear performance before and after heat treatment, as well as the effect of heat treatment on the crystallization behavior for the as prepared amorphous coating were studied. The results indicated that the amorphous coating exhibited excellent corrosion resistance in 3.5%NaCl solution, characterized by the low porosity (2.45%) and the high Cr2O3 content (76.51%) in the as prepared coating, which can effectively protect the substrate. However, after being post heat-treated, numerous pores and cracks emerged in the coating, which can act as short-circuit diffusion channel for the corrosive media, leading to poor corrosion resistance. Results of friction- and wear-testing indicated that the as prepared amorphous coating exhibited the lowest wear volume and wear rate (1.784 × 10-5 mm3/(N·m)). Although, for the post heat-treated coatings, the wear volume and wear rate increase slightly with the increasing heat treatment temperature.

Key wordsamorphous coating    heat treatment    corrosion performance    wear performance
收稿日期: 2024-08-21      32134.14.1005.4537.2024.265
ZTFLH:  TG174  
基金资助:云南省重点研发计划(202303AP140016);重大科技专项(202302AG050006)
通讯作者: 宋鹏,E-mail:songpeng@kust.edu.cn,研究方向为金属材料加工
Corresponding author: SONG Peng, E-mail: songpeng@kust.edu.cn
作者简介: 梁玉伟,女,1996年生,博士生
图1  涂层制备及性能表征
图2  Fe-Cr-Mo-Si-B非晶粉末形貌及在310S不锈钢上所制备涂层的截面形貌
图3  Fe-Cr-Mo-Si-B非晶粉末以及喷涂态和热处理态涂层的XRD谱图
图4  摩擦系数、截面磨痕深度和磨损率曲线
图5  室温下涂层样品磨损轨迹的三维白光干涉图
图6  涂层表面磨损轨迹的SEM图
Marked pointFeCrMoSiO
129.49.58.81.550.9
253.417.215.92.610.9
320.66.65.61.266.0
426.49.82.62.259.0
表1  图6中标记点处EDS成分分析结果
图7  原始与热处理涂层在3.5%NaCl溶液中的Tafel极化曲线
图8  原始与热处理涂层的EIS及其对应的等效电路图
SampleRs / Ω·cm2Rp / Ω·cm2CPEc / μF·cm-2·S n-1CPEct / μF·cm-2·S n-1
Fe-AMC4.924442.627.078 × 10-40.5580
HT40011.66243.85.363 × 10-30.629
HT5006.659113.27.477 × 10-30.610
HT6008.5175.44.579 × 10-30.549
表2  等效电路中各参数的拟合值
图9  4种涂层样品腐蚀后表面的SEM形貌
图10  4种涂层样品的XPS图及钝化膜的化学元素的比较
1 Jia H L, Wang G Y, Chen S Y, et al. Fatigue and fracture behavior of bulk metallic glasses and their composites [J]. Prog. Mater. Sci., 2018, 98: 168
2 Jung H Y, Yi S. Nanocrystallization and soft magnetic properties of Fe23M6 (M: C or B) phase in Fe-based bulk metallic glass [J]. Intermetallics, 2014, 49: 18
3 Rodríguez-Sánchez M, Sadanand S, Ghavimi A, et al. Relating laser powder bed fusion process parameters to (micro) structure and to soft magnetic behaviour in a Fe-based bulk metallic glass [J]. Materialia, 2024, 35: 102111
4 Burkov A A, Chigrin P G. Effect of tungsten, molybdenum, nickel and cobalt on the corrosion and wear performance of Fe-based metallic glass coatings [J]. Surf. Coat. Technol., 2018, 351: 68
5 Gostin P F, Oswald S, Schultz L, et al. Acid corrosion process of Fe-based bulk metallic glass [J]. Corros. Sci., 2012, 62: 112
6 Guo S F, Chan K C, Xie S H, et al. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater [J]. J. Non-Cryst. Solids, 2013, 369: 29
7 Wang M Q, Zhou Z H, Wang Q J, et al. Role of passive film in dominating the electrochemical corrosion behavior of FeCrMoCBY amorphous coating [J]. J. Alloy. Compd., 2019, 811: 151962
8 Wang Y, Jiang S L, Zheng Y G, et al. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions [J]. Corros. Sci., 2012, 63: 159
9 Wang Y, Zheng Y G, Ke W, et al. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions [J]. Corros. Sci., 2011, 53: 3177
10 Zhai H M, Yuan H Y, Li W S, et al. Corrosion resistance mechanisms of detonation sprayed Fe-based amorphous coating on AZ31B magnesium alloy [J]. J. Non-Cryst. Solids, 2022, 576: 121276
11 Wang C J, Chen Q J, Xia H X. Optimization of Cr/Mo molar ratio in FeCoCrMoCBY alloys for high corrosion resistance [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2663
12 Zhang S D, Wu J, Qi W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
13 Wu J, Zhang S D, Sun W H, et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
14 Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
15 Pang S J, Zhang T, Asami K, et al. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance [J]. Corros. Sci., 2002, 44: 1847
16 Wang Q Q, Bai X D, Sun B, et al. Influence of Si on tribological behavior of laser cladded Fe-based amorphous/crystalline composite coatings [J]. Surf. Coat. Technol., 2021, 405: 126570
17 Nayak S K, Kumar A, Sarkar K, et al. Mechanistic insight into the role of amorphicity and porosity on determining the corrosion mitigation behavior of Fe-based amorphous/nanocrystalline coating [J]. J. Alloy. Compd., 2020, 849: 156624
18 Yang Y, Zhang C, Peng Y, et al. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings [J]. Corros. Sci., 2012, 59: 10
19 Yang X D, Gao M, Liu Y H, et al. Superior corrosion resistance of high-temperature Ir-Ni-Ta-(B) amorphous alloy in sulfuric acid solution [J]. Corros. Sci., 2022, 200: 110227
20 Iken H, Basseguy R, Guenbour A, et al. Classic and local analysis of corrosion behaviour of graphite and stainless steels in polluted phosphoric acid [J]. Electrochim. Acta, 2007, 52: 2580
21 Oshchepkov A G, Bonnefont A, Parmon V N, et al. On the effect of temperature and surface oxidation on the kinetics of hydrogen electrode reactions on nickel in alkaline media [J]. Electrochim. Acta, 2018, 269: 111
22 Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
23 Ong M S, Li Y, Blackwood D J, et al. The influence of heat treatment on the corrosion behaviour of amorphous melt-spun binary Mg-18at.%Ni and Mg-21at.%Cu alloy [J]. Mater. Sci. Eng., 2001, 304A-306A: 510
24 Sweitzer J E, Shiflet G J, Scully J R. Localized corrosion of Al90Fe5Gd5 and Al87Ni8.7Y4.3 alloys in the amorphous, nanocrystalline and crystalline states: resistance to micrometer-scale pit formation [J]. Electrochim. Acta, 2003, 48: 1223
25 Kiminami C S, Souza C A C, Bonavina L F, et al. ss-Cr-M-B (M = Mo, Nb) alloys [J]. J. Non-Cryst. Solids, 2010, 356: 2651
26 Vasić M M, Simatović I S, Radović L, et al. Influence of microstructure of composite amorphous/nanocrystalline Fe72Ni8Si10B10 alloy on the corrosion behavior in various environments [J]. Corros. Sci., 2022, 204: 110403
27 Liang Y W, Yang M C, Kong D H, et al. Effect of annealing on corrosion resistance and mechanical properties of Cr-Fe-Ni-Co-Mo-Si-B amorphous coating [J]. J. Mater. Res. Technol., 2024, 29: 4622
28 Anis M, Rainforth W M, Davies H A. Wear behaviour of rapidly solidified Fe68Cr18Mo2B12 alloys [J]. Wear, 1994, 172: 135
29 Fu B Y, He D Y, Zhao L D. Effect of heat treatment on the microstructure and mechanical properties of Fe-based amorphous coatings [J]. J. Alloy. Compd., 2009, 480: 422
30 Bakare M S, Voisey K T, Chokethawai K, et al. Corrosion behaviour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10 [J]. J. Alloy. Compd., 2012, 527: 210
31 Sobolev V V, Guilemany J M. Investigation of coating porosity formation during high velocity oxy-fuel (HVOF) spraying [J]. Mater. Lett., 1994, 18: 304
32 Li W L, Di R, Yuan R W, et al. Microstructure, wear resistance and electrochemical properties of spherical/non-spherical WC reinforced Inconel 625 superalloy by laser melting deposition [J]. J. Manuf. Process., 2022, 74: 143
33 Xia Z X, Wang C Y, Zhao D, et al. Substructure formation mechanism and high temperature performance in CoNiCrAlY seal coating by laser melting deposition with inside-laser coaxial powder feeding [J]. Surf. Coat. Technol., 2019, 367: 108
34 Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon contents [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
34 商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273
35 Wang Y, Jiang S L, Zheng Y G, et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2011, 206: 1307
36 Yi S, Zhou S X, Du X J, et al. Influence of microstructure and corrosion resistance of Cu-containing medium-entropy alloy prepared by selective laser melting [J]. J. Chin. Soc. Corros. Prot., DOI: 10.11902/1005.4537.2024.064
36 易 铄, 周生璇, 杜晓洁 等. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能 [J]. 中国腐蚀与防护学报, DOI: 10.11902/1005.4537.2024.064
[1] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[2] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[3] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[4] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[5] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[6] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[7] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[8] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[9] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[10] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[11] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[12] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[13] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[14] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[15] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.