Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 709-719     CSTR: 32134.14.1005.4537.2024.177      DOI: 10.11902/1005.4537.2024.177
  研究报告 本期目录 | 过刊浏览 |
基于DDPM-RSM的浆体管道冲蚀磨损数值模拟研究
肖琦琨1,2, 马军1,2(), 郭凯1,2, 熊新1,2, 袁浩然1,2
1.昆明理工大学信息工程与自动化学院 昆明 650500
2.昆明理工大学 云南省智能控制与应用重点实验室 昆明 650500
Numerical Simulation of Erosion Wear in Slurry Pipeline Based on DDPM-RSM
XIAO Qikun1,2, MA Jun1,2(), GUO Kai1,2, XIONG Xin1,2, YUAN Haoran1,2
1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
2.Yunnan Key Laboratory of Intelligent Control and Application, Kunming University of Science and Technology, Kunming 650500, China
引用本文:

肖琦琨, 马军, 郭凯, 熊新, 袁浩然. 基于DDPM-RSM的浆体管道冲蚀磨损数值模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 709-719.
Qikun XIAO, Jun MA, Kai GUO, Xin XIONG, Haoran YUAN. Numerical Simulation of Erosion Wear in Slurry Pipeline Based on DDPM-RSM[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 709-719.

全文: PDF(5536 KB)   HTML
摘要: 

为揭示浆体输送过程中铁精矿对管道的冲蚀磨损机理,提出了一种基于稠密离散相模型(DDPM)与响应曲面法(RSM)的浆体管道冲蚀磨损特性分析的方法,模拟浆体输送过程中铁精矿对管道造成冲蚀磨损行为,并分析单因素和多因素耦合对管道冲蚀磨损的影响。首先,结合铁精矿输送实际工况,建立计算流体力学模型;其次利用公开数据集验证E/CRC冲蚀模型的准确性,表明该模型可用于计算矿浆管道的冲蚀磨损;最后,探究入口流速、颗粒粒径、颗粒质量流率及矿浆流动方向对管道冲蚀磨损的影响,设计RSM试验分析不同因素影响重要程度。结果表明:冲蚀速率随入口流速增加而增大,在1.5~2.0 m/s范围内管道的冲蚀磨损最小;随着粒径增大,冲蚀速率呈现先减小后增大的趋势,粒径大小为100 μm时,能有效降低管道冲蚀磨损;随着颗粒质量流率增加,最大冲蚀速率先增大,后减小,最后趋于稳定,存在临界质量流率,结合管道运输的经济性,颗粒质量流率应大于2.5 kg/s;3种流场因素对管道冲蚀磨损影响程度为入口流速>颗粒质量流率>颗粒粒径;多因素耦合下,入口流速与颗粒粒径对管道冲蚀磨损影响最大。可为管道冲蚀防护提供理论依据。

关键词 浆体输送计算流体力学冲蚀磨损稠密离散相模型响应曲面法数值模拟    
Abstract

In order to reveal the erosion wear mechanism of pipeline during conveying iron ore concentrate containing slurry, a method based on the so called “dense discrete phase model” (DDPM) and “response surface methodology” (RSM) is proposed to analyze the erosion wear characteristics of slurry pipeline, and simulate the erosion wear behavior of pipeline caused by iron ore concentrate during the slurry conveying process. Meanwhile, the influence of single factor and multi-factor coupling on the erosion wear of pipeline is also analyzed. Firstly, a computational fluid dynamics (CFD) model is established by combining the actual working conditions of iron ore concentrate transportation; secondly, the accuracy of the E/CRC (Erosion/Corrosion Research Center) erosion model is verified by using the open dataset, which shows that the model can be used to calculate the erosion wear of the slurry pipeline; finally, the effect of inlet velocity, particle size, particle mass flow rate and slurry flow direction on the erosion wear of the pipeline is investigated, and RSM tests are designed to analyze the importance of different factors. The results show that: the erosion rate increases with the increase of inlet velocity, namely, in the range of 1.5-2.0 m/s the pipeline erosion wear is the smallest; with the increase of particle size, the erosion rate shows the trend of decreasing and then increasing, for particle size of 100 μm, hence, the pipeline erosion wear can be effectively reduced; with the increase of the particle mass flow rate, the maximum erosion rate increases first, then decreases, and finally tends to be stabilized; By taking the critical mass flow rate and the economics of pipeline transportation into account, the propriate particle mass flow rate should be selected above 2.5 kg/s. The influence of three flow field factors on pipeline erosion wear is inlet velocity > particle mass flow rate > particle size; under multi-factor coupling, the combined effect of inlet velocity and particle size has the greatest influence on pipeline erosion wear. The method proposed in this study can provide a theoretical basis for pipe erosion protection.

Key wordsslurry transportation    computational fluid dynamics    erosion wear    dense discrete phase model    response surface methodology    numerical simulation
收稿日期: 2024-06-04      32134.14.1005.4537.2024.177
ZTFLH:  TG174  
基金资助:国家自然科学基金(62173168);云南省基础研究计划项目(202101BE070001-055)
通讯作者: 马军,E-mail:mjun@kust.edu.cn,研究方向为长距离浆体输送管道输送机理分析及管道腐蚀与防护
Corresponding author: MA Jun, E-mail: mjun@kust.edu.cn
作者简介: 肖琦琨,男,2000年生,硕士生
图1  管道几何模型
图2  管道不同流动方向
图3  管道网格划分
图4  网格无关性检验
图5  文献[28]的管道模型
图6  弯管冲蚀速率仿真值与实验值对比
图7  冲蚀速率与入口流速的关系
图8  不同入口流速下管道冲蚀磨损云图
图9  冲蚀速率与颗粒粒径的关系
图10  不同颗粒粒径下管道冲蚀磨损云图
图11  冲蚀速率与颗粒质量流率的关系
图12  不同颗粒质量流率下管道冲蚀磨损云图
图13  冲蚀速率与不同管道流向关系
NumberInlet velocity (A) m·s-1Particle size (B) μmParticle mass flow rate (C) kg·s-1Erosion rate (Y) 10-7 kg·m-2·s-1
15.005002.2510.26
23.252752.253.00
33.25504.004.69
45.00502.255.67
53.255004.003.23
63.255000.501.88
73.252752.253.59
83.252752.253.31
91.502750.500.29
101.50502.254.52
113.252752.253.59
123.252752.253.18
131.505002.251.26
141.502754.000.51
155.002750.501.52
165.002754.008.01
173.25500.500.48
表1  RSM-BBD实验设计与结果
ModelSum of squaresdfMean squareF / valueP / valuesignificance
112.67912.5294.96< 0.0001***
A44.55144.55337.93< 0.0001***
B0.2010.201.530.2554
C18.80118.80142.63< 0.0001***
AB15.41115.41116.85< 0.0001***
AC9.8519.8574.71< 0.0001***
BC2.0512.0515.530.0056**
A24.6714.6735.440.0006***
B24.5614.5634.550.0006***
C213.71113.71104.01< 0.0001***
Residual0.9270.13---
Lack of fit0.6630.223.280.1408
Pure error0.2740.067---
Cor total113.6016----
R20.9919
表2  方差分析表
图14  响应因素交互作用等高线图
[1] Xu Z L, Cai R H, Wu R Q, et al. Experimental study on critical velocity of slurry pipeline transportation [J]. Clean Coal Technol., 2018, 24(3): 139
[1] 许振良, 蔡荣宦, 武日权 等. 矿浆管道输送临界流速试验研究 [J]. 洁净煤技术, 2018, 24(3): 139
[2] Joshi T, Parkash O, Krishan G. CFD modeling for slurry flow through a horizontal pipe bend at different Prandtl number [J]. Int. J. Hydrogen Energy, 2022, 47: 23731
[3] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
[3] 胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
[4] Pan D L, Si X D, Lv J H. Effect of flow velocity on flow accelerated corrosion rate of carbon steel elbow [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1064
[4] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1064
doi: 10.11902/1005.4537.2022.319
[5] Khan R, Ya H H, Pao W, et al. Influence of sand fines transport velocity on erosion-corrosion phenomena of carbon steel 90-degree elbow [J]. Metals, 2020, 10: 626
[6] Calderón-Hernández J W, Sinatora A, de Melo H G, et al. Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time [J]. Wear, 2020, 450-451: 203272
[7] Wang Q C, Huang Q Y, Wang N R, et al. An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series [J]. Eng. Fail. Anal., 2021, 130: 105779
[8] Wang Q C, Huang Q Y, Sun X, et al. Experimental and numerical evaluation of the effect of particle size on slurry erosion prediction [J]. J. Energy Resour. Technol., 2021, 143: 073101
[9] Chang Y J, Wu A X, Ruan Z E, et al. Wear mechanism and parameters optimization of coarse aggregate-containing paste transport pipes [J]. J. Cent. South Univ. (Sci. Technol.), 2024, 55: 307
[9] 常英杰, 吴爱祥, 阮竹恩 等. 含粗骨料膏体输送管道磨损机理及参数优化 [J]. 中南大学学报(自然科学版), 2024, 55: 307
[10] Khan R, Petru J, Seikh A H. Erosion prediction due to micron-sized particles in the multiphase flow of T and Y pipes of oil and gas fields [J]. Int. J. Pressure Vessels Piping, 2023, 206: 105041
[11] Guo Z H, Zhang J, Li H. Optimal design for anti-erosion of pneumatic conveying elbow with rib structure [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 525
[11] 郭姿含, 张 军, 李 晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计 [J]. 中国腐蚀与防护学报, 2023, 43: 525
doi: 10.11902/1005.4537.2022.231
[12] Zhuo K, Qiu Y J, Zhang Y D, et al. Influence of particle parameters on erosion wear of gas-solid two-phase flow in pipeline [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2020, 35(6): 100
[12] 卓 柯, 邱伊婕, 张引弟 等. 颗粒参数对气固两相流冲蚀磨损的影响分析 [J]. 西安石油大学学报(自然科学版), 2020, 35(6): 100
[13] Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
[13] 彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556
doi: 10.11902/1005.4537.2014.239
[14] Peng W S, Cao X W. Influence of pipe parameters on flow field of liquid-solid two-phase flow and erosion of pipe bend [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 87
[14] 彭文山, 曹学文. 管道参数对液/固两相流弯管流场及冲蚀影响分析 [J]. 中国腐蚀与防护学报, 2016, 36: 87
doi: 10.11902/1005.4537.2014.268
[15] Chen Q S, Zhou H L, Wang Y M, et al. Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1608
[16] Khanouki H A, Zahedi P, Shirazi S A, et al. Erosion modeling in high concentration slurry flow [A]. ASME 2017 Fluids Engineering Division Summer Meeting [C]. Waikoloa, 2017
[17] Cloete S, Johansen S T, Amini S. Performance evaluation of a complete Lagrangian KTGF approach for dilute granular flow modelling [J]. Powder Technol., 2012, 226: 43
[18] Chen X Z, Wang J W. A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas–solid flows [J]. Powder Technol., 2014, 254: 94
[19] Braun M, Srinivasa M, Gohel S. Validation of an efficient CFD-DEM model for large scale fluidized beds [A]. 9th International Conference on CFD in the Minerals and Process Industries [C]. Melbourne, 2012
[20] Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield [J]. J. Fluid Mech., 1984, 140: 223
[21] Gidaspow D B, Ding J. Hydrodynamics of circulating fluidized beds: Kinetic theory approach [A]. Proceedings of the 7th Engineering Foundation Conference on Fluidization [C]. Brisbane, 1992: 75
[22] Ogawa S, Umemura A, Oshima N. On the equations of fully fluidized granular materials [J]. Z. für Angew. Math. und Phys. ZAMP, 1980, 31: 483
[23] Zhang Y, Reuterfors E P, McLaury B S, et al. Comparison of computed and measured particle velocities and erosion in water and air flows [J]. Wear, 2007, 263: 330
[24] Lai F, Wang F M, Zhu X Y, et al. Erosion characteristics of centrifugal pumps based on E/CRC erosion model [J]. J. Harbin Eng. Univ., 2021, 42: 719
[24] 赖 芬, 王凤鸣, 朱相源 等. 基于E/CRC磨损模型的离心泵壁面磨损特性研究 [J]. 哈尔滨工程大学学报, 2021, 42: 719
[25] ANSYS Fluent 22.0 Theory Guide [Z]. ANSYS Inc, 2022
[26] Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
[27] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircraft, 1975, 12: 471
[28] Zeng L, Zhang G A, Guo X P. Erosion–corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
[29] Ding H D. Influence of material particle size on the critical flow rate for slurry pipeline transportation [J]. Hyd. Coal Mining Pipeline Trans., 2011: 1
[29] 丁宏达. 物料粒径对浆体管道输送临界流速的影响 [J]. 水力采煤与管道运输, 2011: 1
[30] Wang Z C, Wang Y W, Xia H C. Critical nonsilting velocity of slurry in transportation pipe with different bend angles [J]. Min. Metall. Eng., 2022, 42(3): 41
[30] 王忠昶, 王彦文, 夏洪春. 不同角度弯管输送料浆不淤流速的研究 [J]. 矿冶工程, 2022, 42(3): 41
doi: 10.3969/j.issn.0253-6099.2022.03.009
[31] Liu W T, Wu H F, Shen J J. Based on Box-Behnken method superfine cement grouting material ratio and performance optimization model [J]. Coal Sci. Technol., 2024, 52(8): 146
[31] 刘伟韬, 吴海凤, 申建军. 基于RSM的超细水泥注浆材料配比及性能优化模型 [J]. 煤炭科学技术, 2024, 52(8): 146
[1] 郭姿含, 樊建春, 杨云朋, 张军, 代四维. 动载作用下高压三通管汇的冲蚀特性研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 698-708.
[2] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[3] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[4] 郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[5] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[6] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[8] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[9] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[10] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[11] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[12] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[13] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[14] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[15] 杜艳霞; 张国忠 . 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .