Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 698-708     CSTR: 32134.14.1005.4537.2024.174      DOI: 10.11902/1005.4537.2024.174
  研究报告 本期目录 | 过刊浏览 |
动载作用下高压三通管汇的冲蚀特性研究
郭姿含1, 樊建春1(), 杨云朋2, 张军3, 代四维1
1.中国石油大学(北京)安全与海洋工程学院 北京 102249
2.中国石油安全环保技术研究院 北京 102206
3.集美大学海洋装备与机械工程学院 厦门 361021
Erosion Characteristics of High-pressure Tee Manifold Under Dynamic Load
GUO Zihan1, FAN Jianchun1(), YANG Yunpeng2, ZHANG Jun3, DAI Siwei1
1.School of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2.Institute of Petroleum Safety and Environmental Protection Technology, China, Beijing 102206, China
3.College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
引用本文:

郭姿含, 樊建春, 杨云朋, 张军, 代四维. 动载作用下高压三通管汇的冲蚀特性研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 698-708.
Zihan GUO, Jianchun FAN, Yunpeng YANG, Jun ZHANG, Siwei DAI. Erosion Characteristics of High-pressure Tee Manifold Under Dynamic Load[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 698-708.

全文: PDF(8646 KB)   HTML
摘要: 

三通是高压管汇中的常用部件,长期处于高压环境且受到固体颗粒的冲蚀,直接影响系统的安全运行及管道的使用寿命。针对高压三通管汇冲蚀问题,在自建的可对试样施加动载的液固两相冲蚀试验台上进行试验,提出一种动载作用下的冲蚀模型,并嵌入数值模拟软件中对不同空间角度的三通结构在不同内压、流速及颗粒质量流量下的冲蚀规律进行分析。结果表明:不同三通结构的最大冲蚀率均随内压的增加而增加,随流速的增加呈指数增加,随颗粒质量流量的增加线性增加,且三通空间角度越大,增长速率越快。三通结构空间夹角增大时,最大冲蚀率增加,该规律不随内压、流速及颗粒质量流量的变化而变化。其结果可为高压三通管汇安全运营提供一定的参考依据。

关键词 动载高压管汇三通冲蚀模型数值模拟    
Abstract

T-pipe is a common component in high-pressure manifolds, which are in high-pressure environments while subjected to solid particles erosion for a long term, which subsequently affects the safe operation of the relevant system and the service life of pipelines. Herein, the erosion behavior of the high-pressure tee manifold was assessed via a home-made liquid-solid two-phase erosion test bench, which can apply dynamic load on the tested t-pipe subjected to erosion. A model was proposed for description of erosion under dynamic load, and then coupled with a numerical simulation software, to analyze the erosion performance of tee structures at various spatial angles under different internal pressures, velocities, and particle mass flows. Results show that the maximum erosion rate of different tee structures increases with the increase of internal pressure, exponentially with the increase of flow rate, linearly with the increase of particle mass flow rate, and the greater the tee space angle, the faster the growth rate. When the space angle of the tee structure increases, the maximum erosion rate increases, while the erosion performance does not change with the change of internal pressure, velocity, and particle mass flow rate. The results can provide reference for the safe operation of the high-pressure tee manifold.

Key wordsdynamic load    high-pressure manifold-pipe    tee    erosion model    numerical simulation
收稿日期: 2024-06-02      32134.14.1005.4537.2024.174
ZTFLH:  TE832  
基金资助:国家自然科学基金(52175208);福建省自然科学基金(2022J01334);中国石油天然气集团有限公司科技项目
通讯作者: 樊建春, E-mail:fjc666888@126.com,研究方向为摩擦磨损机制
Corresponding author: FAN Jianchun, E-mail: fjc666888@126.com
作者简介: 郭姿含,女,1997年生,博士生
图1  试验装置示意图
图2  试样结构图
图3  试验值和模型预测值的对比
图4  T型三通和歧型三通结构图
图5  网格划分
Number of gridMaximum erosion rate / kg·m-2·s-1Error / %
568324.12 × 10-5-
1082453.46 × 10-516.02
1613902.94 × 10-515.03
2143552.52 × 10-514.29
2687162.32 × 10-57.94
3454472.31 × 10-50.43
表1  网格独立性验证
图6  数值模型有效性验证
图7  不同角度三通管道的压力分布
图8  不同角度三通管道的速度分布
图9  不同空间角度三通不同截面的速度迹线
图10  最大冲蚀率随三通角度的变化
图11  不同角度三通管道的冲蚀率分布
图12  不同角度三通的颗粒轨迹图
图13  不同三通结构的最大冲蚀率随内压的变化和T型三通不同内压下的冲蚀率
图14  不同三通结构的最大冲蚀率随流速的变化和不同流速下的冲蚀率分布
图15  不同三通结构的最大冲蚀率随颗粒质量流量的变化和不同颗粒质量流量下的冲蚀率分布
[1] Hun L, Yang B, Song X X, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance [J]. J. Hydrol., 2021, 601: 126590
[2] Zhang H, Cheng Y P, Deng C B, et al. A novel in-seam borehole discontinuous hydraulic flushing technology in the driving face of soft coal seams: enhanced gas extraction mechanism and field application [J]. Rock Mech. Rock Eng., 2022, 55: 885
[3] Moridis G J, Anantraksakul N, Blasingame T A. Transformational-decomposition-method-based semianalytical solutions of the 3D problem of oil production from shale reservoirs [J]. SPE J., 2021, 26: 780
doi: 10.2118/199083-PA
[4] Hong B Y, Li Y B, Li Y, et al. Numerical simulation of solid particle erosion in the gas-liquid flow of key pipe fittings in shale gas fields [J]. Case Stud. Therm. Eng., 2023, 42: 102742
[5] Li H Z, Huang B X, Zhao X L, et al. Effects of fluid and proppant properties on proppant transport and distribution in horizontal hydraulic fractures of coal under true-triaxial stresses [J]. J. Nat. Gas Sci. Eng., 2022, 108: 104795
[6] Jin X M, Zhang X L, Liao H, et al. Analysis of high pressure pipe sink failure and bursting during sand fracturing process [J]. Saf. Secur., 2017, 38(1): 17
[6] 金雪梅, 张祥来, 廖 浩 等. 加砂压裂过程中高压管汇失效爆裂分析 [J]. 安全, 2017, 38(1): 17
[7] Zhu X H, Zhang Q, Zhang Y M, et al. Study on erosion wear characteristics of high pressure manifold tee [J]. Surf. Technol., 2021, 50(7): 258
[7] 祝效华, 张 覃, 张洋铭 等. 高压管汇三通冲蚀磨损特性研究 [J]. 表面技术, 2021, 50(7): 258
[8] Shan Y T, Jing J Q, Zhang Z Y, et al. Investigation of erosion behavior of particle-fluid flow in offshore platform T-pipes [J]. Int. J. Press. Vessels Pip., 2024, 209: 105174
[9] Zhang J, Zhang H, Liu Y, et al. Erosion wear characteristics of tee tubes with gas-solid two-phase flow [J]. J. Pressure Vessel Technol., 2021, 143: 064502
[10] Khan R, Petru J, Seikh A H. Erosion prediction due to micron-sized particles in the multiphase flow of T and Y pipes of oil and gas fields [J]. Int. J. Press. Vessels Pip., 2023, 206: 105041
[11] Huang H B, Qian Y B, Guo X T, et al. Numerical simulation of high pressure pipe sink erosion and wear based on DDPM model [J]. Sci. Technol. Eng., 2023, 23: 11195
[11] 黄华宝, 钱玉宝, 郭旭涛 等. 基于DDPM模型的高压管汇冲蚀磨损数值模拟 [J]. 科学技术与工程, 2023, 23: 11195
[12] Wang H K, Yu Y, Yu J X, et al. Numerical simulation of the erosion of pipe bends considering fluid-induced stress and surface scar evolution [J]. Wear, 2019, 440-441: 203043
[13] Yang S Q, Fan J C, Zhang L B, et al. Performance prediction of erosion in elbows for slurry flow under high internal pressure [J]. Tribol. Int., 2021, 157: 106879
[14] Dai S W, Fan J C, Li J, et al. Study on the erosion performance of high-pressure double elbow based on experiment and numerical simulation [J]. Tribol. Int., 2023, 187: 108671
[15] Li J, Fan J C, Yang S Q, et al. Quantitative study on magnetic memory detection in dynamic load erosion process of high-pressure manifold [J]. China Pet. Mach., 2023, 51(8): 132
[15] 李 杰, 樊建春, 杨思齐 等. 高压管汇动载冲蚀过程磁记忆检测定量研究 [J]. 石油机械, 2023, 51(8): 132
[16] Ahlert K R. Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 steel [D]. Tulsa: University of Tulsa, 1994
[17] Wang H K, Yu Y, Yu J X, et al. Development of erosion equation and numerical simulation methods with the consideration of applied stress [J]. Tribol. Int., 2019, 137: 387
[18] Lin N, Lan H Q, Xu Y G, et al. Effect of the gas–solid two-phase flow velocity on elbow erosion [J]. J. Nat. Gas Sci. Eng., 2015, 26: 581
[19] Peng W S, Cao X W. Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow [J]. Powder Technol., 2016, 294: 266
[20] Guo Z H, Zhang J, Huang J M, et al. Numerical analysis of erosion resistance of elbow with bionic inner surface structure [J]. Surf. Technol., 2023, 52(5): 90
[20] 郭姿含, 张 军, 黄金满 等. 具有仿生内表面结构的弯管抗冲蚀特性数值分析 [J]. 表面技术, 2023, 52(5): 90
[21] Guo Z H, Zhang J, Li H. Optimal design for anti-erosion of pneumatic conveying elbow with rib structure [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 525
[21] 郭姿含, 张 军, 李 晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计 [J]. 中国腐蚀与防护学报, 2023, 43: 525
doi: 10.11902/1005.4537.2022.231
[22] Guo Z H, Zhang J, Li H, et al. A comprehensive evaluation of the anti-erosion characteristics of several new structural elbows in the pneumatic conveying system [J]. Powder Technol., 2022, 412: 117976
[23] Zhou F, Qian Y B, Ren Y L, et al. Erosion wear analysis of shale gas fracturing tee manifold [J]. Sci. Technol. Eng., 2023, 23: 2396
[23] 周 方, 钱玉宝, 任伊朗 等. 页岩气压裂三通管汇冲蚀磨损分析 [J]. 科学技术与工程, 2023, 23: 2396
[24] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircr., 1975, 12: 471
[1] 肖琦琨, 马军, 郭凯, 熊新, 袁浩然. 基于DDPM-RSM的浆体管道冲蚀磨损数值模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 709-719.
[2] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] 郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[4] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[5] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[6] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[7] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[8] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[9] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[10] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[11] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[12] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[13] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[14] 胡道春 孙乐民 上官宝. 动载荷条件下紫铜/铬青铜受流摩擦磨损性能[J]. 中国腐蚀与防护学报, 2009, 29(1): 35-39.
[15] 杜艳霞; 张国忠 . 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .