Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 399-409    DOI: 10.11902/1005.4537.2013.185
  本期目录 | 过刊浏览 |
冲刷腐蚀研究方法进展
李强1, 唐晓2(), 李焰2
1. 中国石油大学 (华东) 化学工程学院 青岛 266580
2. 中国石油大学 (华东) 机电工程学院 青岛 266580
Progress in Research Methods for Erosion-corrosion
LI Qiang1, TANG Xiao2(), LI Yan2
1. College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
2. College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(2921 KB)   HTML
摘要: 

从实验研究和数值模拟两个方面综述了冲刷腐蚀研究方法进展,实验研究方面概括了各种冲刷腐蚀实验装置、单因素控制方法和腐蚀实验测试方法,数值模拟方面综述了数值模拟在冲刷腐蚀研究中的应用以及冲刷和腐蚀的计算模型。文中还分析了冲刷腐蚀研究中实验和数值模拟存在的主要问题,最后对冲刷腐蚀研究工作今后的发展方向进行了展望。

关键词 冲刷腐蚀实验研究数值模拟测试方法计算模型    
Abstract

In this article, experimental methods and numerical simulations for research of erosion-corrosion were intensively summarized. Furthermore, the main problems related with the experimental test and the numerical simulation were analyzed. Based on the current work, further development trend was also proposed.

Key wordserosion-corrosion    experimental investigation    numerical simulation    testing method    calculating model
    
ZTFLH:  TG172  
基金资助:山东省优秀中青年科学家科研奖励基金计划项目 (BS2010NJ025),中央高校基本科研费用专项资金和中国石油大学(华东)自主创新科研计划项目 (12CX04054A) 资助
作者简介: null

李强,男,1988年生,硕士生,研究方向为石油装备材料腐蚀与防护

引用本文:

李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
Qiang LI, Xiao TANG, Yan LI. Progress in Research Methods for Erosion-corrosion. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 399-409.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.185      或      https://www.jcscp.org/CN/Y2014/V34/I5/399

图1  旋转圆柱电极试验机示意图[9]
图2  可开展电化学测试的射流式冲刷腐蚀试验机示意图[13]
图3  浸没式射流冲刷试验机示意图[14]
图4  管流循环式料浆实验台架示意图[17]
图5  流动式电化学测量池示意图[17]
图6  带有实验段局部放大视图的实验管流示意图[18]
图7  Coriolis冲蚀试验机示意图[20]
Classification Mechanism
Ke/Kc≤0.1 corrosion
0.1<Ke/Kc≤1 corrosion-erosion
1<Ke/Kc≤10 erosion-corrosion
Ke/Kc>10 erosion
表1  冲刷腐蚀机制的分类[44]
[1] Dai Z, Duan Z X, Shen S M. Review on the effects of hydrodynamic factors in liquid-solid two-phase flow erosion-corrosion[J]. Petro-Chem. Equip., 2006, 35(6): 20-23
[1] (代真, 段志祥, 沈士明. 流体力学因素对液固两相流冲刷腐蚀的影响[J]. 石油化工设备, 2006, 35(6): 20-23)
[2] Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot[J]. Tribology-Mat. Suf. Interface., 2007, 1(1): 33-47
[3] Kermani M B, Harrop D. The impact of corrosion on oil and gas industry[J]. SPE Production Facilities, 1996, 11: 186-190
[4] Zhen Y G, Yao Z M, Ke W. The state-of-art of erosion-corrosion research[J]. Mater. Sci. Eng., 1992, (3): 21-26
[4] (郑玉贵, 姚治铭, 柯伟. 冲刷腐蚀的研究近况[J]. 材料科学与工程, 1992, (3): 21-16)
[5] Poulson B. Complexities in predicting erosion corrosion[J]. Wear, 1999, 233-235: 497-504
[6] Rajahram S S, Harvey T J,Wood R J K. Erosion-corrosion resistance of engineering materials in various test conditions[J]. Wear, 2009, 267: 244-254
[7] Jiang X X,Li S Z,Li S. Corrosive Wear of Metals[M]. Beijing: Chemical Industry Press, 2003
[7] (姜晓霞,李诗卓,李曙. 金属的腐蚀磨损[M]. 北京: 化学工业出版社, 2003)
[8] Clark H M, Hartwich R B. A re-examination of the ‘particle size effect’ in slurry erosion[J]. Wear, 2001, 248: 147-161
[9] Zhou S, Stack M M, Newman R C. Electrochemical studies of anodic dissolution of mild steel in a carbonate-bicarbonate buffer under erosion-corrosion conditions[J]. Corros. Sci., 1996, 38(7): 1071-1084
[10] Guo H X, Lu B T, Luo J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel[J]. Electrochim. Acta, 2005, 51: 315-323
[11] Tian B R, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry. I: Effects of hydrodynamic condition[J]. Corros. Sci., 2008, 50: 773-779
[12] Zu J B, Hutchings I M, Burstein G T. Design of a slurry erosion test rig[J]. Wear, 1990, 140(2): 331-344
[13] Barika R C, Wharton J A, Wood R J K, et al. Electro-mechanical interactions during erosion-corrosion[J]. Wear, 2009, 267: 1900-1908
[14] Neville A, Wang C. Erosion-corrosion of engineering steels-Can it be managed by use of chemicals?[J]. Wear, 2009, 267: 2018-2026
[15] Gnanavelu A, Kapur N, Neville A, et al. An integrated methodology for predicting material wear rates due to erosion[J]. Wear, 2009, 267: 1935-1944
[16] Cai F, Liu W, Fan X H, et al. Research progress on erosion corrosion of metallic materials under fluid jet impingement[J]. Tribology, 2011, 31(5): 521-527
[16] (蔡峰, 柳伟, 樊学华等. 流体喷射条件下金属材料冲刷腐蚀的研究进展[J]. 摩擦学学报, 2011, 31(5): 521-527)
[17] Postlethwaite J, Brady B J, Hawrylak M W, et al. Effects of corrosion on the wear patterns in horizontal slurry pipelines[J]. Corrosion, 1978, 34(7): 245-250
[18] Malka R, Nesic S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear, 2007, 262: 791-797
[19] El-Gammala M, Mazhara H, Cottona J S. The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow[J]. Nucl. Eng. Des., 2010, 240: 1589-1598
[20] Tian H H, Addie G R, Visintainer R J. Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries[J]. Wear, 2009, 267: 2039-2047
[21] Tian H H, Addie G R, Pagalthivarthi K V. Determination of wear coefficients for erosive wear prediction through Coriolis wear testing[J]. Wear, 2005, 259: 160-170
[22] Zheng Y G, Yao Z M, Zhang Y, et al. Erosion-corrosion synergism and erosion-corrosion resistant alloy development[J]. Acta Metall.Sin, 2000, 36(1): 51-54
[22] (郑玉贵, 姚治铭, 张玉等. 冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计[J]. 金属学报, 2000, 36(1): 51-54)
[23] Lin Y Z, Liu J J, Yong X Y, et al. Application of numerical method to study of flow-induced corrosion-(I) Metal corrosion under laminar condition[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 1-7
[23] (林玉珍, 刘景军, 雍兴跃等. 数值计算法在流体腐蚀研究中的应用-(I) 层流条件下金属的腐蚀[J]. 中国腐蚀与防护学报, 1999, 19(1): 1-7)
[24] Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries[J]. Tribol. Int., 2002, 35: 643-650
[25] Wang X Y, Li D Y. Application of an electrochemical scratch technique to evaluate contributions of mechanical and electrochemical attacks to corrosive wear of materials[J]. Wear, 2005, 259: 1490-1496
[26] Rajahram S S, Harvey T J, Wood R J K. Electrochemical investigation of erosion-corrosion using a slurry pot erosion tester[J]. Tribol. Int., 2011, 44: 232-240
[27] Wood R J K, Wharton J A, Speyer A J, et al. Investigation of erosion-corrosion processes using electrochemical noise measurements[J]. Tribol. Int., 2002, 35: 631-641
[28] Blatt W, Kohley T, Lotz U, et al. The influence of hydrodynamics on erosion-cCorrosion in two-phase liquid-particle flow[J]. Corrosion, 1989, 45(10): 793-804
[29] Zheng Y G, Yan Y G, Long K, et al. An apparatus and its calibration for erosion-corrosion test in liquid-particle two-phase flow with laser-doppler-anemometry[J]. J. Chin. Soc. Corros. Prot., 1999, 19(5): 301-305
[29] (郑玉贵, 阎永贵, 龙康等. 双相流冲刷腐蚀激光Doppler测试装置及其校正[J]. 中国腐蚀与防护学报, 1999, 19(5): 301-305)
[30] Burstein G T, Sasaki K. Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel[J]. Wear, 2000, 240: 80-94
[31] Liu J J, Meng J Y, Li X Y, et al. Application of DELPHI language on studies of flow induced corrosion of metallic materials[J]. Corros. Sci. Prot. Technol., 2005, 19(5): 340-344
[31] (刘景军, 孟靖颖, 李效玉等. DELPHI在金属材料流动腐蚀研究中的应用[J]. 腐蚀科学与防护技术, 2005, 19(5): 340-344)
[32] Quan C R, Sun C L, Wang S Z. Analysis of the mechanism of flowing seawater on duct erosion using of CFD technology[J]. Ship Sci. Technol., 2010, 32(1): 54-58
[32] (权崇仁, 孙存楼, 王世忠. 基于CFD技术的流动海水对管路侵蚀机理分析[J]. 舰船科学技术, 2010, 32(1): 54-58)
[33] Lu B T, Luo J L, Mohammadi F. Correlation between repassivation kinetics and corrosion rate over a passive surface in flowing slurry[J]. Electrochim. Acta, 2008, 53: 7022-7031
[34] Ferng Y M, Lin B H. Predicting the wall thinning engendered by erosion-corrosion using CFD methodology[J]. Nucl. Eng. Des., 2010, 240: 2836-2841
[35] Davis C, Frawley P. Modelling of erosion-corrosion in practical geometries[J]. Corros. Sci., 2009, 51: 769-775
[36] Telfer C G, Stack M M, Jana B D. Particle concentration and size effects on the erosion-corrosion of pure metals in aqueous slurries[J]. Tribol. Int., 2013, 53: 35-44
[37] Bozzini B, Ricotti M E, Boniardi M, et al. Evaluation of erosion-corrosion in multiphase flow via CFD and experimental analysis[J]. Wear, 2003, 255: 237-245
[38] Hu X M, Barker R, Neville A, et al. Case study on erosion-corrosion degradation of pipework located on an offshore oil and gas facility[J]. Wear, 2011, 271:1295-1301
[39] Zhang Z, Cheng X W, Zheng Y G, et al. Numerical simulation of erosion-corrosion in liquid-solid two-phase flow[J]. Corros. Sci. Prot. Technol., 2001, 13(2): 89-95
[39] (张政, 程学文, 郑玉贵等. 突扩圆管内液固两相流冲刷腐蚀过程的数值模拟[J]. 腐蚀科学与防护技术, 2001, 13(2): 89-95)
[40] Yong X Y, Liu J J, Lin Y Z, et al. Application of numerical method to study of flow-induced corrosion-(II) Metal corrosion under turbulent condition[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 8-14
[40] (雍兴跃, 刘景军, 林玉珍等. 数值计算法在流体腐蚀研究中的应用-(II)湍流条件下金属的腐蚀[J]. 中国腐蚀与防护学报, 1999, 19(1): 8-14)
[41] Liu J J, Lin Y Z, Tian X L, et al. Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system[J]. J. Chemic. Ind. Eng., 2004, 55(2): 231-236
[41] (刘景军, 林玉珍, 田兴玲等. 碳钢在固/液两相流条件下流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(2): 231-236)
[42] Liu J J, Lin Y Z, Tian X L, et al. Numerical simulation of flow induced corrosion of duplex stainless steel in liquid/particle two-phase in-pipe flow[J]. J. Chem. Ind. Eng., 2004, 55(3): 409-413
[42] (刘景军, 林玉珍, 田兴玲等. 双相不锈钢管固/液两相流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(3): 409-413)
[43] Ding Y G, Han X L, Zheng J S. Model Analysis of Erosion-corrosion Process in Liquid-solid Phase[J]. J. Zhengzhou Univ.(Eng. Sci.), 2002, 23(2): 63-66
[43] (丁一刚, 韩秀丽, 郑家燊. 液固流动引起的腐蚀和磨损的数学描述[J]. 郑州大学学报 (工学版), 2002, 23(2): 63-66)
[44] Stack M M, Abd El-Badia T M. Some comments on mapping the combined effects of slurry concentration, impact velocity and electrochemical potential on the erosion-corrosion of WC/Co-Cr coatings[J]. Wear, 2008, 264: 826-837
[45] Stack M M, Corlett N, Zhou S. A methodology for the construction of the erosion-corrosion map in aqueous environments[J]. Wear, 1997, 203/204: 474-488
[46] Stack M M, Corlett N, Zhou S. Impact angle effects on the transition boundaries of the aqueous erosion-corrosion maps[J]. Wear, 1999, 225-229: 190-198
[47] Finnie I. The mechanism of erosion of ductile metals [A]. Proc.3rd US Congress of Appl. Mech., ASME [C]. New York: 1958, 527-532
[48] Bitter J G A. A study of erosion phenomena: Part I[J]. Wear, 1963, 6(1): 5-21
[49] Mamoun M. Analytical models for the erosive-corrosive wear process [R]. ANL Rep. 75-XX-21975, appendix I (Argonne National Laboratory)
[50] Hutchings I. A model for the erosion of metals by spherical particles at normal incidence[J]. Wear, 1981, 70(3): 269-281
[51] Sundararajan G, Shewmon P G. A new model for the erosion of metals at normal incidence[J]. Wear, 1983, 84: 237-258
[52] Hien L K, Shewmon P G. Effects of hardness on the solid particle erosion mechanisms in AISI 1060 steel[J]. Wear, 1983, 89: 291-302
[53] Shewmon P G, Sundararajan G. The erosion of metals[J]. Annu. Rev. Mater. Sci., 1983, 13: 301-318
[54] Levy A V. The platelet mechanism of erosion of ductile metals[J]. Wear, 1986, 108: 1-21
[55] Jahanmir S. A fundamental study of the delamination theory of wear [D]. Cambridge: Massachusetts Institute of Technology, 1976
[56] Wood R J K, Jones T F, Ganeshalingam J. Comparison of predicted and experimental erosion estimates in slurry ducts[J]. Wear, 2004, 256: 937-947
[57] Stack M M, Abdelrahman S M, Jana B D. Some perspectives on modelling the effect of temperature on the erosion-corrosion of Fe in aqueous conditions[J]. Tribol. Int., 2010, l43: 2279-2297
[58] Bergevin K. Effect of slurry velocity on the mechanical end electrochemical components of erosion-corrosion in vertical pipes [D]. Saskatoon: University of Saskatchewan, 1984
[59] Stack M M, Corlett N, Turgoose S. Some recent advances in the development of theoretical approaches for the construction of erosion-corrosion maps in aqueous conditions[J]. Wear, 1999, 233-235: 535-541
[60] Yong X Y, Lin Y Z. Progress in study on flow-induced corrosion[J]. Corros. Sci. Prot. Technol., 2002, 14(1): 32-34
[60] (雍兴跃, 林玉珍. 流动腐蚀研究的新进展[J]. 腐蚀科学与防护技术, 2002, 14(1): 32-34)
[61] Stack M M, Abdelrahman S M, Jana B D. A new methodology for modelling erosion-corrosion regimes on real surfaces: Gliding down the galvanic series for a range of metal-corrosion systems[J]. Wear, 2010, 268: 533-542
[1] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[2] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[3] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[4] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[5] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
[6] 刘贵群, 郑玉贵, 姜胜利, 荆军航, 董伟娟, 曾宏, 司品宪. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[7] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[8] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[9] 朱娟, 张乔斌, 陈宇, 张昭, 张鉴清, 曹楚南. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
[10] 乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[11] 李守彪, 许立坤,沈承金,李相波. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[12] 翁永基 李维锋 李相怡. 电化学噪声方法比较石油用钢的临界点蚀温度[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[13] 金威贤 雒娅楠 宋诗哲. 金属材料实海冲刷腐蚀检测[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
[14] 吴俊升; 李晓刚; 公铭扬; 李磊; 王博 . 己内酰胺精制薄膜蒸发器腐蚀失效分析[J]. 中国腐蚀与防护学报, 2007, 27(3): 181-185 .
[15] 杜艳霞; 张国忠 . 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .