Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 346-352    DOI: 10.11902/1005.4537.2020.050
  研究报告 本期目录 | 过刊浏览 |
区域阴极保护数值模拟边界条件反演计算方法研究及应用
庄大伟1, 杜艳霞1(), 陈涛涛2, 鲁丹平1
1.北京科技大学新材料技术研究院 北京 100083
2.北京燃气集团有限责任公司 北京 100035
Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application
ZHUANG Dawei1, DU Yanxia1(), CHEN Taotao2, LU Danping1
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Gas Group Company Limited, Beijing 100035, China
全文: PDF(2508 KB)   HTML
摘要: 

数值模拟计算可为区域阴极保护优化设计提供重要参考,但数值计算的精度受到多种因素的影响,特别是边界条件的确定。边界条件与站场埋地管网的防腐层类型、绝缘性能、土壤中的极化特性等因素有关,对于老旧站场,防腐层状况不能准确掌握,如何来确定不同区域埋地管道的边界条件是数值模拟计算的难点。本文探索了将现场试验和数值模拟相结合,使用反演计算获得边界条件的方法,在此基础上对阳极地床分布进行了数值模拟优化计算,确定了区域阴极保护设计方案。现场实施后,将计算结果与现场测试结果进行了对比,相对误差小于10%,验证了该方法的准确性。

关键词 区域阴极保护数值模拟技术边界条件反演计算优化计算    
Abstract

Numerical simulation could provide important information to optimize the regional cathodic protection system. However, the accuracy of numerical simulation is affected by several factors, especially by the boundary conditions, reflecting the coating condition, polarization characteristics of buried structures in the soil environment. The coating conditions of pipelines sometimes are quite different. It is difficult to determine the boundary conditions of buried pipelines accurately for in service stations. In this paper, the boundary conditions required for numerical simulation are acquired by inversion calculation, then based on the acquired boundary conditions, the optimal design for distribution of anode ground beds was carried out, therewith an optimized regional cathodic protection scheme was determined. Following the determined scheme, the construction of a regional cathodic protection system was realized, hence the calculation results were compared with the real field test results in the end. The margin of errors for the above two sets of results is under 10%, that verified reasonably the accuracy of the proposed method.

Key wordsregional cathodic protection    numerical simulation    boundary condition    inversion calculation    optimization calculation
收稿日期: 2020-03-16     
ZTFLH:  TE988  
基金资助:国家重点研发计划(2016YFC0802103)
通讯作者: 杜艳霞     E-mail: duyanxia@ustb.edu.cn
Corresponding author: DU Yanxia     E-mail: duyanxia@ustb.edu.cn
作者简介: 庄大伟,男,1995年生,硕士生

引用本文:

庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
Dawei ZHUANG, Yanxia DU, Taotao CHEN, Danping LU. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 346-352.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.050      或      https://www.jcscp.org/CN/Y2021/V41/I3/346

图1  站场埋地管道三维几何模型及网格划分
图2  管道分布和临时阳极地床位置图
Number1# Anode bed2# Anode bed3# Anode bed
VselfvsCSE / VVonvs CSE / VVoffvs CSE / VΔV / mVVonvsCSE / VVoffvsCSE / VΔV / mVVonvsCSE / VVoffvsCSE / VΔV / mV
Area 1A1-0.5-1.46-0.62-120-1.74-0.74-240-1.14-0.68-180
A2-0.49-0.86-0.63-140-1.25-0.75-260-1.03-0.7-210
A3-0.47-0.97-0.62-150-1.37-0.74-270---------
A4-0.47-1.07-0.63-160-1.47-0.75-280---------
A5-0.47-1.05-0.61-140-1.44-0.73-260---------
A6-0.5-1.1-0.63-130-1.45-0.74-240---------
A7-0.48-0.96-0.6-120-1.36-0.7-220---------
A8-0.5-1.01-0.65-150-1.47-0.75-250-1.04-0.7-200
Area 2B1-0.54-0.74-0.59-50-1.57-0.72-180-0.82-0.65-110
B2-0.44-0.64-0.56-120-1.11-0.69-250-0.78-0.63-190
B3-0.47---------------------------
B4-0.55----------1.11-0.75-200-0.8-0.66-110
B5-0.47---------------------------
B6-0.55-0.75-0.66-110-1.19-0.8-250-0.88-0.71-160
B7-0.49---------------------------
B8-0.47----------1.3-0.79-320-0.82-0.63-160
B9-0.54---------------------------
B10-0.44-0.65-0.52-80-1.17-0.67-230-0.88-0.64-200
B11-0.52---------------------------
B12-0.52-0.7-0.57-50-1.24-0.68-160-0.88-0.64-120
B13-0.46---------------------------
B14-0.46-0.75-0.59-130-1.14-0.68-220-1.11-0.69-230
B15-0.48---------------------------
B16-0.47-0.8-0.59-120-1.2-0.7-230-1.25-0.71-240
B17-0.47-0.84-0.59-120-1.23-0.66-190-1.57-0.7-230
B18-0.49-------------------1.64-0.72-230
B19-0.48-0.75-0.57-90----------3.32-0.84-360
B20-0.42-0.69-0.54-120----------1.39-0.63---
B21-0.48, (-0.42~-0.52)-------------------1.29------
Area 3C1----------------------3.96-0.87-870
表1  管道电位偏移和站点反馈数据
图3  1#和3#阳极床保护实测断电电位与反演结果对比
Test point

Area2

B15~B17

Area1& Area 2

A7~B17

Area2

B17~B21

Area1

A1~A2

Area1

A8~B1

Area1

B2~B6

Other
Coating surface resistivity / Ω·m2200020002000100000500001000003000
Coating damage rate1.86×10-42.48×10-43.10×10-41.66×10-62.48×10-68.28×10-78.27×10-5
表2  管道防腐层特性反演结果
图4  站场埋地管道防腐层极化曲线反演结果
图5  阳极地床位置分布图
Test pointMeasured off-potential V (CSE)Calculated off-potential V (CSE)Error
1#-1010-995-1.49%
2#-1000-990-1.00%
3#-1040-985-5.29%
4#-1150-11600.87%
5#-1080-10900.93%
6#-940-920-2.13%
7#-980-10305.10%
8#-950-9702.11%
9#-960-9802.08%
10#-880-9659.66%
11#-930-9805.38%
12#-970-109012.37%
13#-970-10659.79%
14#-940-10309.57%
15#-880-8800.00%
16#-890-880-1.12%
17#-900-880-2.22%
18#-960-875-8.85%
19#-920-875-4.89%
表3  计算电位与实测电位误差
图6  测试点的分布位置
图7  保护电位分布云图
1 Hu Y B, Zhang F, Zhao J. Regional cathodic protection design of a natural gas distribution station [J]. Corros. Sci. Technol., 2017, 16: 235
2 Deng W L, Deng Y G, Ren J, et al. Application of numerical simulation in regional cathodic protection design of an oil and gas treatment plant [J]. Mater. Prot., 2019, 52(10): 148
2 邓伟林, 邓勇刚, 任建等. 数值模拟在某油气处理厂区域阴保设计中的运用 [J]. 材料保护, 2019, 52(10): 148
3 Sun X G, Wang Z F. Regional cathodic protection of Dongying crude oil depot [J]. Oil Gas Storage Trans., 1992, 11(3): 57
3 孙希功, 王芷芳. 东营原油库区域性阴极保护 [J]. 油气储运, 1992, 11(3): 57
4 Wang F, Wang Z F, Hu S B. Problem and countermeasure of the regional cathodic protection facility in natural gas stations [J]. Oil-Gas Field Surf. Eng., 2019, 38(S1): 135
4 王飞, 王志方, 胡生宝. 天然气站场区域阴极保护系统存在的问题及措施 [J]. 油气田地面工程, 2019, 38(S1): 135
5 Du Y X, Dong L, Wang L Y, et al. Key technologies in regional cathodic protection in oil & gas stations [A]. Corrosion 2014 [C]. San Antonio, Texas, 2014: 3957
6 Shukla P K, Nordquist A, Kulczyk J. Cathodic protection design considerations in congested area facilities [A]. Corrosion 2018 [C]. Phoenix, Arizona, 2018: 10900
7 Kirkpatrick E L. Conflict between copper grounding and CP in oil & gas production facilities [J]. Mater. Perform., 2002, 41: 22
8 Liu C, Shankar A, Orazem M E, et al. Numerical simulations for cathodic protection of pipelines [A]. Orazem M E ed. Underground Pipeline Corrosion [M]. Woodhead Publishing, 2014: 85
9 Dong L, Cui W, Yang Y, et al. Compatibility analysis of regional CP system and electrical grounding system in Oil & Gas Stations [A]. Corrosion 2017 [C]. New Orleans, Louisiana, 2017: 9254
10 Cui G, Li Z L, Wei X, et al. Cathodic protection design of station area based on boundary element method [J]. J. China Univ. Pet., 2014, 38(6): 161
10 崔淦, 李自力, 卫续等. 基于边界元法的站场区域阴极保护设计 [J]. 中国石油大学学报 (自然科学版), 2014, 38(6): 161
11 Al-Hazzaa M I, Al-Abdullatif M O. Effect of soil conductivity on the design of cathodic protection systems used in the prevention of pipeline corrosion [J]. J. King Saud Univ.-Eng. Sci., 2010, 22: 111
12 Ni M. Numerical simulation research on cathodic protection parameters of long distance pipeline [D]. Xi'an: Xi'an Shiyou University, 2019
12 倪梦. 长输管道区域阴极保护参数的数值模拟研究 [D]. 西安: 西安石油大学, 2019
13 Wang Y T. Research on regional cathodic protection data management platform of long distance pipeline based on big data [D]. Xi'an: Xi'an Shiyou University, 2019
13 王玉婷. 基于大数据的长输管道区域阴极保护数据管理平台研究 [D]. 西安: 西安石油大学, 2019
14 Dong L, Lu M X, Du Y X. Study on the boundary conditions of coated steel in numerical simulation of cathodic protection systems [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11318
15 Lu D P, Du Y X, Tang D Z, et al. Research status and existing problems of regional cathodic protection technology in oil and gas transmission stations [J]. Corros. Sci. Prot. Technol., 2018, 30: 84
15 鲁丹平, 杜艳霞, 唐德志等. 油气输送站场区域阴极保护研究现状及存在问题 [J]. 腐蚀科学与防护技术, 2018, 30: 84
16 Du Y X, Jiang Z T, Lu M X, et al. Study on regional cathodic protection for well casings group [A]. Corrosion 2013 [C]. Orlando, Florida, 2013: 2446
17 Santiago J A F, Telles J C F. A solution technique for cathodic protection with dynamic boundary conditions by the boundary element method [J]. Adv. Eng. Softw., 1999, 30: 663
18 Brasil S L D C, Telles J C F, Miranda L R M. Simulation of coating failures on cathodically protected pipelines experimental and numerical results [J]. Corrosion, 2000, 56: 1180
19 Nisancioglu K, Gartland P O, Dahl T, et al. Role of surface structure and flow rate on the polarization of cathodically protected steel in seawater [J]. Corrosion, 1987, 43: 710
20 Carson S L, Orazem M E. Time-dependent polarization behaviour of pipeline grade steel in low ionic strength environments [J]. J. Appl. Electrochem., 1999, 29: 707
21 Du Y X, Lu M X, Dong L, et al. Study on the cathodic protection scheme in oil and gas transmission station based on numerical simulation [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11057
22 Du Y X, Lu M X, Sun J M. Problems and solutions concerning cathodic protection in oil and gas transmission station [J]. Gas Heat, 2011, 31(11): 43
22 杜艳霞, 路民旭, 孙健民. 油气输送厂站阴极保护相关问题及解决方案 [J]. 煤气与热力, 2011, 31(11): 43
23 Zhang Y Z, Wang Y M, Liu L L, et al. Applied development of numerical simulation technology in pipeline cathodic protection [J]. Corros. Prot., 2011, 32: 969
23 张玉志, 王玉梅, 刘玲莉等. 数值仿真技术在长输管道阴极保护中的应用进展 [J]. 腐蚀与防护, 2011, 32: 969
24 Liu Y. Thermal boundary condition inversion of strip controlled cooling [D]. Chongqing: Chongqing University, 2017
24 刘瑶. 带钢控制冷却热边界条件反演 [D]. 重庆: 重庆大学, 2017
25 Wang T Z. Research on heat transfer coefficient inversion method based on the third boundary condition [D]. Harbin: Harbin industrial of Technology, 2018
25 王天资. 基于第三类边界条件的传热系数反演方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
26 Rodopoulos D C, Gortsas T V, Tsinopoulos S V, et al. ACA/BEM for solving large-scale cathodic protection problems [J]. Eng. Anal. Bound. Elem., 2019, 106: 139
27 Zhang F, Chen H Y, Li G D, et al. The application of numerical simulation in cathodic protection of pipelines and stations [J]. Oil Gas Storage Trans., 2011, 30: 208
27 张丰, 陈洪源, 李国栋等. 数值模拟在管道和站场阴极保护中的应用 [J]. 油气储运, 2011, 30: 208
28 Kim Y S, Kim J, Choi D, et al. Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method [J]. Eng. Anal. Bound. Elem., 2017, 77: 36
29 Metwally I A, Al-Mandhari H M, Gastli A, et al. Factors affecting cathodic-protection interference [J]. Eng. Anal. Bound. Elem., 2007, 31: 485
30 Kim Y S, Lee S K, Chung H J, et al. Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle [J]. Ocean Eng., 2018, 148: 223
[1] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[2] 杜艳霞 . 阴极保护电位分布的数值计算[J]. 中国腐蚀与防护学报, 2008, 28(1): 53-58 .