Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 979-987          DOI: 10.11902/1005.4537.2021.325
  研究报告 本期目录 | 过刊浏览 |
基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究
杨湘愚1, 关蕾1(), 李雨2, 张永康1, 王冠1, 闫德俊2
1.广东工业大学 省部共建精密电子制造技术与装备国家重点实验室 广州市非传统制造技术及 装备重点实验室 广州 510006
2.中船黄埔文冲船舶有限公司 广东省舰船先进焊接技术企业重点实验室 广州 510715
Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test
YANG Xiangyu1, GUAN Lei1(), LI Yu2, ZHANG Yongkang1, WANG Guan1, YAN Dejun2
1. Guangzhou Key Laboratory of Nontraditional Machining and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships, CSSC Huangpu Wenchong Shipbuilding Company Limited, Guangzhou 510715, China
引用本文:

杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
Xiangyu YANG, Lei GUAN, Yu LI, Yongkang ZHANG, Guan WANG, Dejun YAN. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 979-987.

全文: PDF(6018 KB)   HTML
摘要: 

采用正交试验和数值模拟相结合的方法,研究了90°弯管在液固两相流条件下,管径 (A)、入口流速 (B)、液体流向 (C)、砂粒直径 (D) 和砂粒质量流量 (E) 5个因素对弯管冲刷腐蚀行为的影响程度大小。结果表明:不同因素对弯管冲刷腐蚀影响的顺序为B>A>E>C>D。当B为5 m/s、A为30 mm、E为0.03 kg/s、C液体流向为水平竖直向上、D为500 μm时,冲蚀速率达到最大,冲蚀速率较大的区域集中在弯管轴向角度60°到90°之间,径向角度180°附近,即位于弯管外侧靠近出口处,实验结果也验证了此种工况下弯管外侧出口处的腐蚀速率更高,同时最优因素水平试验结果也表明:降低入口流速和增大管径能大幅度降低冲蚀速率。

关键词 冲刷腐蚀正交试验数值模拟90°弯管腐蚀速率    
Abstract

Marine seawater pipeline and various fittings play an important role in cooling and firefighting, among which square elbow is widely used. However, it is found from daily maintenance that the square elbow is also the part mostly prone to leakage. In this paper, the effect of related parameters for pipe, such as diameter (A), inlet velocity (B), liquid flow direction (C), sand diameter (D) and sand mass flow (E) on the erosion-corrosion behavior of square elbow in the condition of liquid-solid two-phase flow was studied by means of orthogonal test and numerical simulation. The results show that the order of influence of different factors on erosion-corrosion of square elbow may be ranked as: B>A>E>C>D. The erosion rate of the square elbow reaches the maximum in case that B is 5 m/s, A is 30 mm, E is 0.03 kg/s, C is the flow direction horizontal and vertical upward, and D is 500 μm respectively. The area with large erosion rate is concentrated in the range between 60° and 90° of the axial angle of the elbow, whilst near 180° of the radial angle, i.e., where located on the outside of the elbow near the exit. The experimental results also verify that the corrosion rate on the outside of the elbow near the exit is higher in this working condition. At the same time, the results of tests by factors of optimal level also show that reducing the inlet velocity and increasing the pipe diameter can greatly reduce the erosion rate.

Key wordserosion-corrosion    orthogonal test    numerical simulation    90° elbow    corrosion rate
收稿日期: 2021-11-15     
ZTFLH:  TG174  
基金资助:广东省自然科学基金(2021A1515010967);国家自然科学基金(52001074);广州市科技计划项目(202102020723);广州市科技计划项目(202102020626);中国博士后科学基金(2020M682929)
作者简介: 杨湘愚,男,1997年生,硕士生
图1  弯管模型及流动方向
图2  网格数量与最大冲蚀速率的关系曲线
LevelA: pipe diameter / mmB: inlet velocity / m·s-1C: flow directionD: sand diameter / μmE: sand mass flow / kg·s-1
1301a500.005
2382b1000.01
344.53c3000.02
4575d5000.03
表1  因素水平表
图3  管流式实验装置简图
图4  测试弯管段弯管阵列电极排布
Test planFactor

Max erosion rate

10-8 kg/m2·s

A:pipe diameter mmB:inlet velocity m·s-1C: flow directionD: sand diameter μmE:sand mass flow kg·s-1
1: A1B1C1D1E1301a500.0050.084
2: A1B2C2D2E2302b1000.011.39
3: A1B3C3D3E3303c3000.028.6
4: A1B4C4D4E4305d5000.0396.74
5: A2B1C2D3E4381b3000.030.35
6: A2B2C1D4E3382a5000.021.85
7: A2B3C4D1E2383d500.011.65
8: A2B4C3D2E1385c1000.0053.77
9: A3B1C3D4E244.51c5000.010.42
10: A3B2C4D3E144.52d3000.0050.89
11: A3B3C1D2E444.53a1000.033.4
12: A3B4C2D1E344.55b500.027.26
13: A4B1C4D2E3571d1000.020.13
14: A4B2C3D1E4572c500.031.04
15: A4B3C2D4E1573b5000.0050.87
16: A4B4C1D3E2575a3000.012.48
k126.70.251.952.511.4---
k21.911.292.472.171.49---
k32.993.633.463.084.46---
k41.1327.5624.8524.9725.38---
R25.5727.3122.922.823.98---
Factor order21453---
表2  基于正交试验的数值模拟结果
图5  因素指标趋势图
图6  冲蚀速率分布云图
图7  优化试验 (B1A4E1D1C1) 冲蚀速率分布云图
图8  1~5号电极开路电位随时间变化曲线经过12 h实验后的极化曲线
ElectrodeOCP / VEcorr / Vba / mv·dec-1bc / mv·dec-1Icorr / A·cm-2
1-0.272±0.001-0.29677.88189.752.321×10-5
2-0.273±0.001-0.29173.87189.572.498×10-5
3-0.274±0.002-0.28673.07192.272.688×10-5
4-0.278±0.003-0.28474.15186.323.127×10-5
5-0.280±0.002-0.28575.95179.923.422×10-5
表3  实验12 h后1~5号电极开路电位及其极化曲线拟合数据
图9  1~5号电极12 h 实验后的电化学阻抗谱及等效电路图
ElectrodeRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
1 (0°)2.7197.7395.6
2 (25°)2.6124.8175.8
3 (45°)2.894.5101.5
4 (65°)3.099.795.2
5 (90°)3.198.789.9
表4  电化学阻抗谱拟合结果 (电极面积:0.2826 cm2)
图10  1~5号电极冲刷腐蚀形貌
[1] Tong Y, Song Q N, Li H L, et al. A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 639
[1] (佟瑶, 宋亓宁, 李慧琳 等. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 639)
[2] Ma A L. Studies on corrosion mechanism, grain boundary engineering and corrosion product film of the marine 90/10 Cu-Ni tubes [D]. Beijing: University of Chinese Academy of Sciences, 2014
[2] (马爱利. 海水管路用B10合金腐蚀机制、晶界工程及腐蚀产物膜研究 [D]. 北京: 中国科学院大学, 2014)
[3] Yang H, Yang R. Failure analysis of leaking of seawater tube in a ship [J]. Dev. Appl. Mater., 2016, 31(3): 28
[3] (杨辉, 杨瑞. 某船海水管路泄漏失效原因分析 [J]. 材料开发与应用, 2016, 31(3): 28)
[4] Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 24(4): 43
[4] (沈宏, 高峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 24(4): 43)
[5] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion [J]. Corros. Sci. Prot. Technol., 2000, 12: 36
[5] (郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制 [J]. 腐蚀科学与防护技术, 2000, 12: 36)
[6] Reyes M, Neville A. Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore [J]. Wear, 2003, 255: 1143
doi: 10.1016/S0043-1648(03)00151-0
[7] Peng W S, Cao X W. Influence of pipe parameters on flow field of liquid-solid two-phase flow and erosion of pipe bend [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 87
[7] (彭文山, 曹学文. 管道参数对液/固两相流弯管流场及冲蚀影响分析 [J]. 中国腐蚀与防护学报, 2016, 36: 87)
[8] Tian B R, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry. I: effects of hydrodynamic condition [J]. Corros. Sci., 2008, 50: 773
doi: 10.1016/j.corsci.2007.11.008
[9] Zeng L, Shuang S, Guo X P, et al. Erosion-corrosion of stainless steel at different locations of a 90° elbow [J]. Corros. Sci., 2016, 111: 72
doi: 10.1016/j.corsci.2016.05.004
[10] Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
[11] Jia W L, Zhang Y R, Li C J, et al. Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline [J]. J. Nat. Gas Sci. Eng., 2021, 89: 103871
doi: 10.1016/j.jngse.2021.103871
[12] Zhang E B, Zeng D Z, Zhu H J, et al. Numerical simulation for erosion effects of three-phase flow containing sulfur particles on elbows in high sour gas fields [J]. Petroleum, 2018, 4: 158
doi: 10.1016/j.petlm.2017.12.008
[13] Redondo C, Chávez-Modena M, Manzanero J, et al. CFD-based erosion and corrosion modeling in pipelines using a high-order discontinuous Galerkin multiphase solver [J]. Wear, 2021, 478/479: 203882
[14] Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
[14] (彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556)
[15] Cao X W, Xu K, Peng W S. Simulation and analysis of liquid-solid two-phase flow erosion failure in pipe bends [J]. Surf. Technol., 2016, 45(8): 124
[15] (曹学文, 胥锟, 彭文山. 弯管液固两相流冲蚀失效模拟分析 [J]. 表面技术, 2016, 45(8): 124)
[16] Shen Y X, Zhao H J, Peng H P, et al. Erosion corrosion simulation of liquid-solid two-phase flow in 90 degree vertical bend pipes [J]. Corros. Prot., 2020, 41(1): 50
[16] (沈雅欣, 赵会军, 彭浩平 等. 90°竖直弯管的液固两相流冲刷腐蚀模拟 [J]. 腐蚀与防护, 2020, 41(1): 50)
[17] Huser A, Kvernvold O. Prediction of sand erosion in process and pipe components [A]. Proceedings of the 1st North American Conference on Multiphase Technology [C]. Banff, 1998: 217
[18] Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
doi: 10.1016/j.jngse.2014.10.001
[19] Lin Z, Ruan X D, Zhu Z C, et al. Numerical study of solid particle erosion in a cavity with different wall heights [J]. Powder Technol., 2014, 254: 150
doi: 10.1016/j.powtec.2014.01.002
[20] Liu H L, Dong L, Wang Y, et al. Overview on mesh generation methods in CFD of fluid machinery [J]. Fluid Mach., 2010, 38(4): 32
[20] (刘厚林, 董亮, 王勇 等. 流体机械CFD中的网格生成方法进展 [J]. 流体机械, 2010, 38(4): 32)
[21] Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment [J]. Exp. Technol. Manage., 2010, 27(9): 52
[21] (刘瑞江, 张业旺, 闻崇炜 等. 正交试验设计和分析方法研究 [J]. 实验技术与管理, 2010, 27(9): 52)
[22] Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4+ [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
[22] (王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609)
[23] Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
[23] (李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
[24] Dai M J, Liu J, Huang F, et al. Pitting corrosion behavior of X100 pipeline steel in a simulated acidic soil solution under fluctuated cathodic protection potentials based on orthogonal method [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 425
[24] (戴明杰, 刘静, 黄峰 等. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 425)
[25] Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
[25] (任莹, 赵会军, 周昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508)
[26] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 125
[26] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 125)
[27] Liu Y H. Electrochemical Measurement Technology [M]. Beijing: Beijing Institute of Aeronautics Press, 1987: 360
[27] (刘永辉. 电化学测试技术 [M]. 北京: 北京航空学院出版社, 1987: 360)
[28] Peng W S, Cao X W, Hou J, et al. Experiment and numerical simulation of sand particle erosion under slug flow condition in a horizontal pipe bend [J]. J. Nat. Gas Sci. Eng., 2020, 76: 103175
doi: 10.1016/j.jngse.2020.103175
[29] Liu J G, Bakedashi W, Li Z L, et al. Effect of flow velocity on erosion-corrosion of 90-degree horizontal elbow [J]. Wear, 2017, 376/377: 516
[30] Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
[30] (胡宗武, 刘建国, 邢蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115)
[1] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[2] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[4] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[5] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[6] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[7] 郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[8] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[9] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[10] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[11] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[12] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[13] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[14] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[15] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.