Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 795-802     CSTR: 32134.14.1005.4537.2023.161      DOI: 10.11902/1005.4537.2023.161
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
电网碳钢、镀锌钢大气腐蚀等级图绘制研究
郝文魁1, 陈新1, 徐玲铃2, 韩钰1, 陈云1, 黄路遥1(), 祝志祥1, 杨丙坤1, 王晓芳1, 张强1
1.国网智能电网研究院有限公司 先进输电技术国家重点实验室 北京 102209
2.国家电网有限公司直流技术中心 北京 100052
Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid
HAO Wenkui1, CHEN Xin1, XU Lingling2, HAN Yu1, CHEN Yun1, HUANG Luyao1(), ZHU Zhixiang1, YANG Bingkun1, WANG Xiaofang1, ZHANG Qiang1
1.State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
2.HVDC Technical Center of State Grid Corporation of China, Beijing 100052, China
全文: PDF(1216 KB)   HTML
摘要: 

基于2393个现场“曝露法”试验站的碳钢、镀锌钢1 a期腐蚀速率和通过ISO 9223中剂量响应函数计算得到的2918个沿海站点的腐蚀速率,采用反距离空间插值法绘制了国家电网公司运营区域的碳钢、镀锌钢大气腐蚀等级图。交叉验证结果表明,p值为2时,碳钢、镀锌钢大气腐蚀地图对腐蚀等级的预测精度最高,分别为85.3%和85.9%。根据大气腐蚀等级图,首次系统掌握了国家电网输电线路沿线及变电站工程大气腐蚀等级,碳钢、镀锌钢处于C4以上重腐蚀等级的面积分别占6.01% (462770 km2) 和5.25% (404250 km2)。

关键词 碳钢镀锌钢氯离子扩散模型大气腐蚀等级图    
Abstract

Atmospheric corrosion is ubiquitous but varies a lot with varying climates and weather conditions at different test sites. Categorizing the atmospheric corrosivity and drawing atmospheric corrosion map with high precision remain key interest for different industries. In this study, atmospheric corrosion maps of carbon steel and galvanized steel for state gird corporation of China were constructed by inverse distance weighting (IDW) interpolation algorithm based on both the measured corrosion rates of coupons exposed at 2393 inland test stations and calculated corrosion rates from a prevalent dose-response function in 2918 sites in coastal regions. A chloride ion diffusion model in coastal region is also proposed to better predict corrosion rates of carbon steel and galvanized steel in coastal regions by using the dose response functions (DRFs) presented in ISO 9223. Cross-validation results demonstrated that the prediction accuracy of IDW interpolation algorithm of carbon steel and galvanized steel were 85.3% and 85.9%. The atmospheric corrosion maps show that the area, where C4-CX severe corrosion occurs for carbon steel and galvanized steel, accounts for 6.01% (462770 km2) and 5.25% (404250 km2) of the total area of the evaluation, respectively. The atmospheric corrosion map of the assessed area can be used to improve our capacity for corrosion protection, operation maintenance, and life prediction for outdoor engineering materials in severe corrosion area.

Key wordscarbon steel    galvanized steel    chloride ion diffusion model    atmospheric corrosion map
收稿日期: 2023-05-11      32134.14.1005.4537.2023.161
ZTFLH:  TG172  
基金资助:国家电网有限公司总部科技项目(5200-202058470A-0-0-00)
通讯作者: 黄路遥,E-mail: hly_0531@163.com,研究方向为电网腐蚀与防护   
Corresponding author: HUANG Luyao, E-mail: hly_0531@163.com   
作者简介: 郝文魁,男,1985年生,博士,高级工程师,2015 年毕业于北京科技大学,获博士学位。现就职于国网智能电网研究院有限公 司,高级工程师,科技部计划处处长,国家材料腐蚀与防护科学数据中心—电网材料腐蚀与防护数据分中 心副主任。郝文魁博士主要研究方向为输变电工程材料腐蚀防护与安全。面向国家电力能源发展以及聚 焦电网工程和装备腐蚀防护治理需求,牵头在我国26 个省建立2393 个大气和5167 个土壤腐蚀试验站,发 展建成覆盖我国典型环境的分布式腐蚀野外观测试验材料服役数据采集生产网络体系,提出电网腐蚀数 字地图绘制方法,首次完成电网大气/土壤腐蚀等级分布图绘制,腐蚀等级准确率达85%,填补了国内外研 究空白,支撑“白鹤滩-江苏”“金上-湖北”等9 条国家重大特高压输电工程差异化防腐选材,提升特高压工 程应对重腐蚀环境的能力。先后主持国家重点研发项目子课题、国网公司科技项目等项目。发表论文30 余篇,授权发明专利 5 项,编制专著13 部。入选IEEE PES变电站接地与防雷委员会委员、中电联输变电材料标准化技术委员会委员、电力设备质量 安全风险监测站委员。获中国腐蚀与防护学会科技进步奖一等奖5 项、二等奖1 项,国网智研院科技进步一等奖1 项。2023 年 获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 795-802.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.161      或      https://www.jcscp.org/CN/Y2023/V43/I4/795

Station

Annual average temperature

/ °C

Annual average relative humidity

Annual average SO2 deposition

/ mg·m-2·d-1

LiaoningDalian11.859.9%16.8
Lvshun11.261.7%17.4
Yingkou10.860.3%20.5
Huludao10.654.9%19
HebeiQinhuangdao14.558.2%24.6
Tangshan14.256.4%20.1
Cangzhou14.258%23.2
TianjinTianjin15.954.6%16.9
ShandongWeihai15.465.9%20.9
Qingdao14.660.2%27
JiangsuLianyungang16.271%15.9
Yancheng16.469.3%17
Nantong115.972.9%17.9
Nantong21667.5%16.2
ShanghaiShanghai17.473.5%11.7
ZhejiangZhoushan17.675.6%12
Ningbo118.476.2%9.6
Ningbo218.377.5%8.9
Taizhou118.976.9%11
Taizhou218.277.3%10.7
Wenzhou1876.8%10.5
FujianFuzhou19.875%10.2
Putian20.476.3%10.6
Quanzhou20.674.8%9.4
Xiamen21.277.1%8.8
表1  沿海不同地区的环境因子数据
Station

Distance to the coastline

km

Annual Cl- deposition

mg·m-2·d-1

XiamenDalianWeihaiAverage
10.01195182.2178.9185.4
20.198.37/108103.2
31.758.14/54.656.4
4421.5427.94/24.7
5733.13/33.933.5
6831.1618.21/24.7
71514.6513.0912.1313.29
8308.226.38.167.56
表2  不同离海距离的Cl-沉降率
Corrosion categoryCorrosion rate of metals (rcorr / g·m-2·a-1)
Carbon steelZinc
C1rcorr≤10rcorr≤0.7
C210< rcorr≤2000.7< rcorr≤5
C3200< rcorr≤4005< rcorr≤15
C4400< rcorr≤65015< rcorr≤30
C5650< rcorr≤150030< rcorr≤60
CX1500< rcorr≤550060< rcorr≤180
表3  大气腐蚀性分类标准
图1  不同腐蚀等级下的试验站点数量比例
图2  沿海Cl-扩散模型
图3  电网碳钢大气腐蚀等级图
图4  电网镀锌钢大气腐蚀等级图
Materialp valueRME

MAE

μm·a-1

RMSE

μm·a-1

Carbon steel127.08%0.2610.327
225.16%0.2390.298
328.01%0.2420.337
429.76%0.2690.352
Galvanized steel129.17%0.2890.318
226.65%0.2560.309
327.99%0.2740.321
428.76%0.2930.347
表4  不同p值时的交叉验证结果
MaterialCategoryp=1p=2p=3p=4
differenceNumberProportionNumberProportionNumberProportionNumberProportion
Carbon steelConsistent category57181.6%59785.3%58483.4%57281.7%
One category difference9513.6%7711.0%8912.7%9713.9%
Two categories difference344.8%263.7%273.9%314.4%
Galvanized steelConsistent category58183.0%60185.9%58583.6%57381.9%
One category difference9113.0%7510.7%8612.3%9413.4%
Two categories difference284.0%243.4%294.1%334.7%
表5  碳钢、镀锌钢大气腐蚀等级准确率预测结果
Carbon steelGalvanized steel
Corrosion category

Area

km2

Proportion

Area

km2

Proportion
C11316701.71%1378301.79%
C2375221048.73%379225049.25%
C3335335043.55%336567043.71%
C44088305.31%3349504.35%
C5400400.52%446600.58%
CX139000.18%246400.32%
表6  不同腐蚀等级所对应的面积和面积比例 (categories)
1 Xia X J, Jin Y, Qiao H W, et al. Survey on corrosion of power transmission and transformation equipment [J]. Corros. Sci. Prot. Technol., 2019, 31: 121
1 夏晓健, 金 焱, 乔汉文 等. 输变电设备腐蚀状况调查与分析 [J]. 腐蚀科学与防护技术, 2019, 31: 121
2 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
2 李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
3 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan Province by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
3 王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
4 Fan Z B, Li X G, Wang X M, et al. Review of regional atmospheric corrosion mapping technologys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 29
4 樊志彬, 李辛庚, 王晓明 等. 区域性大气腐蚀图绘制技术研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 29
5 Pongsaksawad W, Klomjit P, Khamsuk P, et al. Chloride distribution model and corrosion map of structural steels for tropical climate in Thailand [J]. Sci. Total Environ., 2021, 787: 147465
doi: 10.1016/j.scitotenv.2021.147465
6 Chen H C, Yu G C, Li H X, et al. Development of atmospheric corrosion map in Shenyang [J]. Corros. Sci. Prot. Technol., 1992, 4: 195
6 陈鸿川, 于国才, 李洪锡 等. 沈阳市大气腐蚀图研制 [J]. 腐蚀科学与防护技术, 1992, 4: 195
7 Fan Z B, Li X G, Jiang B, et al. Mapping atmospheric corrosivity in Shandong [J]. Water Air Soil Pollut., 2020, 231: 569
doi: 10.1007/s11270-020-04939-7
8 Huang J C. Mapping the atmospheric corrosion level of southern power grid—establishment of dose-response function and optimization of mapping method [D]. Guangzhou: South China University of Technology, 2019
8 黄俊聪. 南方电网区域大气腐蚀等级图绘制—剂量响应函数建立及绘图方法优化 [D]. 广州: 华南理工大学, 2019
9 Vera R, Puentes M, Araya R, et al. Atmospheric corrosion map year of exposure of Chile: results after one [J]. Rev. Constr., 2012, 11: 61
10 Kumar V, Sil A. Rubric assessment and spatial zonal mapping of atmospheric corrosion of steel in India [J]. Corrosion, 2021, 77: 795
doi: 10.5006/3787
11 Tidblad J, Kucera V, Mikhailov A A, et al. UN ECE ICP materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure [J]. Water Air Soil Pollut., 2001, 130, 1457
doi: 10.1023/A:1013965030909
12 Castañeda A A, Corvo F, Fernández D, et al. Outdoor-indoor atmospheric corrosion in a coastal wind farm located in a tropical island [J]. Eng. J., 2017, 21, 43
doi: 10.4186/ej
13 Li X L. Reviews on investigation networks for atmospheric corrosion and suggestions on coming development [J]. Mater. Prot., 2000, 33(1): 20
13 李兴濂. 我国大气腐蚀网站试验研究回顾及发展建议 [J]. 材料保护, 2000, 33(1): 20
14 Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad [J]. Equip. Environ. Eng., 2010, 7(4): 81
14 唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制 [J]. 装备环境工程, 2010, 7(4): 81
15 Cole I S, Ganther W D, Paterson D A, et al. Holistic model for atmospheric corrosion: part 2-experimental measurement of deposition of marine salts in a number of long range studies [J]. Corros. Eng. Sci. Technol., 2003, 38: 259
doi: 10.1179/147842203225008886
16 Chen H, Cui H Y, He Z B, et al. Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere [J]. Mater. Chem. Phys., 2021, 259: 123971
doi: 10.1016/j.matchemphys.2020.123971
[1] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[2] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[3] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[4] 王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[5] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[6] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[7] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[8] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[9] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[10] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[11] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[12] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[13] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[14] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[15] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.