|
|
煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响 |
喻政, 陈明辉( ), 王金龙, 杨莎莎, 王福会 |
东北大学 沈阳材料科学国家研究中心联合研究分部 沈阳 110819 |
|
Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing |
YU Zheng, CHEN Minghui( ), WANG Jinlong, YANG Shasha, WANG Fuhui |
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China |
引用本文:
喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
Zheng YU,
Minghui CHEN,
Jinlong WANG,
Shasha YANG,
Fuhui WANG.
Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1389-1398.
1 |
Roy R, Bandi S, Li X L, et al. Synergistic reduction of SO2 emissions while co-firing biomass with coal in pilot-scale (1.5 MWth) and full-scale (471 MWe) combustors [J]. Fuel, 2024, 358: 130191
|
2 |
Liu L, Memon M Z, Xie Y B, et al. Recent advances of research in coal and biomass co-firing for electricity and heat generation [J]. Circ. Econ., 2023, 2: 100063
|
3 |
Spiegl N, Long X Y, Berrueco C, et al. Oxy-fuel co-gasification of coal and biomass for negative CO2 emissions [J]. Fuel, 2021, 306: 121671
|
4 |
Chen Z Y, Liu J Y, Chen H S, et al. Oxy-fuel and air atmosphere combustions of Chinese medicine residues: performances, mechanisms, flue gas emission, and ash properties [J]. Renew. Energy, 2022, 182: 102
|
5 |
Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion [J]. Energy Convers. Manage., 2003, 44: 3073
|
6 |
Zhang D K. Ultra-Supercritical Coal Power Plants [M]. Sawston: Woodhead Publishing, 2013: 244
|
7 |
Gao Z Y, Hu Z F, Zhang J, et al. Effect of on-site service for 16, 000 and 38, 000 h on microstructure and mechanical properties of austenitic steel HR3C reheater tubes [J]. Eng. Failure Anal., 2023, 149: 107247
|
8 |
Liu H H, Liu G M, Li F T, et al. Oxidation behavior of TP439 stainless steel in water vapor at 800oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 377
|
8 |
(刘欢欢, 刘光明, 李富天 等. TP439不锈钢在800℃高温水蒸气中的初期氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 377)
doi: 10.11902/1005.4537.2022.149
|
9 |
Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
|
9 |
(王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6)
doi: 10.11902/1005.4537.2022.049
|
10 |
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
|
11 |
Jiang C Y, Feng M, Chen M H, et al. Corrosion behaviour of iron and nickel aluminide coatings under the synergistic effect of NaCl and water vapour [J]. Corros. Sci., 2021, 187: 109484
|
12 |
Xu J X, Geng S J, Wang J L, et al. Effects of solid NaCl deposit and water vapor on corrosion resistance of K452 superalloy and aluminized coating [J]. Corros. Commun., 2023, 9: 13
|
13 |
Li Q, Yuan X H, Li D J, et al. Effect of pre-oxidation treatment on the hot corrosion behavior of pack-cemented aluminide coatings on the K438 alloy in salt mixture [J]. Corros. Commun., 2022, 5: 1
|
14 |
Xu Z H, Wang Z K, Niu J, et al. Effects of deposition temperature on the kinetics growth and protective properties of aluminide coatings [J]. J. Alloy. Compd., 2015, 632: 238
|
15 |
Sun W Y, Chen M H, Wang F H. Effect of oxygen doping on the corrosion behavior of nanocrystalline coating under the synergy of solid NaCl deposit and water vapor [J]. J. Mater. Sci. Technol., 2023, 141: 257
doi: 10.1016/j.jmst.2022.09.023
|
16 |
Agüero A, Muelas R, Pastor A, et al. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components [J]. Surf. Coat. Technol., 2005, 200: 1219
|
17 |
Yang Z, Lu J T, Zhang P, et al. Oxidation performance and degradation mechanism of the slurry aluminide coating deposited on Super304H in steam at 600-650oC [J]. Surf. Coat. Technol., 2020, 391: 125700
|
18 |
Lu J T, Gu Y F, Yang Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultrasupercritical power station [J]. Corros. Sci. Prot. Technol., 2014, 26: 205
|
18 |
(鲁金涛, 谷月峰, 杨 珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为 [J]. 腐蚀科学与防护技术, 2014, 26: 205)
doi: 10.11903/1002.6495.2013.155
|
19 |
Yuan L, Xie X, Chen M H, et al. Air oxidation and NaCl corrosion behavior of 20 steel without and with enamel coating at 400oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 890
|
19 |
(袁 磊, 谢 新, 陈明辉 等. 20钢及其搪瓷涂层在400℃下的氧化和NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 890)
|
20 |
Qu Z P, Zhang B B, Xie G X, et al. Research progress on protection technology for waste incinerator heating surfaces [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 452
|
20 |
(曲作鹏, 张贝贝, 谢广校 等. 垃圾焚烧炉受热面防护技术的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 452)
doi: 10.11902/1005.4537.2022.237
|
21 |
Lu J T, Yang Z, Li Y, et al. Fireside corrosion behaviors of Super304H and HR3C in coal Ash/Gas environment with different SO2 contents at 650oC [J]. J. Mater. Eng. Perform., 2018, 27: 2855
|
22 |
Musić S, Popović S, Ristić M. Chemical and structural properties of the system Fe2O3-Cr2O3 [J]. J. Mater. Sci., 1993, 28: 632
|
23 |
Benny S, Grau-Crespo R, de Leeuw N H. A theoretical investigation of α-Fe2O3-Cr2O3 solid solutions [J]. Phys. Chem. Chem. Phys., 2009, 11: 808
|
24 |
Yu Z, Lu J T, Chen M H, et al. Effect of pre-oxidation on hot corrosion resistance of HR3C stainless steel in sulfate salt with or without Fe2O3 [J]. Corros. Sci., 2021, 192: 109789
|
25 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016: 393
|
26 |
Rapp R A. Hot corrosion of materials: a fluxing mechanism? [J]. Corros. Sci., 2002, 44: 209
|
27 |
Ma W C, Wenga T, Frandsen F J, et al. The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies [J]. Prog. Energy Combust. Sci., 2020, 76: 100789
|
28 |
Wright I G, Shingledecker J P. Rates of fireside corrosion of superheater and reheater tubes: making sense of available data [J]. Mater. High Temp., 2015, 32: 426
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|