Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1079-1086     CSTR: 32134.14.1005.4537.2022.288      DOI: 10.11902/1005.4537.2022.288
  研究报告 本期目录 | 过刊浏览 |
NiCoCrFeNb0.45 共晶高熵合金在水力机械中的抗空蚀性能研究
王凯1, 李晨沛2, 卢金玲1(), 王振江1, 王维1
1.西安理工大学 西北旱区生态水利国家重点实验室 西安 710048
2.西安航天动力研究所 液体火箭发动机技术重点实验室 西安 710010
Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery
WANG Kai1, LI Chenpei2, LU Jinling1(), WANG Zhenjiang1, WANG Wei1
1.State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
2.Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
全文: PDF(8573 KB)   HTML
摘要: 

构建了喷射式空蚀实验装置,开展了新型共晶高熵合金NiCoCrFeNb0.45 的抗空蚀性能测试,利用灰度共生矩阵和二值化图像方法,开发了基于图像智能识别的空蚀损伤新型表征方法,实现了空蚀分布形态的数字化分析和空蚀局部损伤的微观评估。结果表明:NiCoCrFeNb0.45的空蚀损伤机制为空泡溃灭造成的形变坑以及加工硬化造成的疲劳裂纹;NiCoCrFeNb0.45的双相共晶组织包含了高硬度的Laves相和高韧性的FCC相,实现了高硬度和高韧性的平衡,相比04Cr13Ni5Mo和45钢具有更优异的抗空蚀性能;利用灰度共生矩阵提取的空蚀图像标准差、能量值和熵值等特征参数表明NiCoCrFeNb0.45空蚀损伤形态分布最为简单,空蚀程度最轻;图像二值化方法可获取材料表面大规模蚀坑群的分布规律,NiCoCrFeNb0.45的空蚀率为8.1%,显著低于另两种材料。该研究为水力机械的空蚀损伤评估及材料防护提供了新的理论参考。

关键词 水力机械抗空蚀材料图像识别共晶高熵合金损伤评估    
Abstract

The cavitation resistance of a new eutectic high entropy alloy NiCoCrFeNb0.45 was assessed via a home-made jet cavitation experimental device. While a new characterization method for cavitation damage, based on image intelligent recognition, was developed by using gray level co-occurrence matrix and binary image method. Therewith, the digital analysis of cavitation damage distribution and the microscopic assessment of local cavitation damage could be realized. The results show that the primary cavitation damage mechanism of NiCoCrFeNb0.45 is the deformable pits caused by repeated cavitation collapse, as well as the fatigue cracks induced by the work hardening. The dual-phase eutectic structure of NiCoCrFeNb0.45 is composed of Laves phase with high hardness and FCC phase with high toughness, which achieves the balance between high hardness and high toughness. As a result, NiCoCrFeNb0.45 has a superior cavitation damage resistance, compared with 04Cr13Ni5Mo and 45 steel. The characteristic parameters, such as standard deviation, energy value and entropy value of cavitation image, are extracted by gray level co-occurrence matrix, and these parameters show that the distribution of cavitation damage for NiCoCrFeNb0.45 is the simplest, and the degree of cavitation damage is the lowest. The image binarization method could help to obtain the regularity of distribution of large-scale pits on the material surface. The cavitation damage ratio of NiCoCrFeNb0.45 is 8.1%, which is significantly lower than that of the other two materials. This study provides a new reference for cavitation damage assessment and material protection for hydraulic machinery.

Key wordshydraulic machinery    anti-cavitation material    image recognition    eutectic high entropy alloy    damage evaluation
收稿日期: 2022-09-16      32134.14.1005.4537.2022.288
ZTFLH:  TH312  
基金资助:国家自然科学基金(51879216);国家自然科学基金(51906200);国家自然科学基金(51906201);陕西省教育厅重点实验室科研计划项目(19JS045)
通讯作者: 卢金玲,E-mail: jinling_lu@163.com,研究方向为能源装备流动安全评估与防护研究   
Corresponding author: LU Jinling, E-mail: jinling_lu@163.com   
作者简介: 王 凯,男,1991年生,博士,讲师

引用本文:

王凯, 李晨沛, 卢金玲, 王振江, 王维. NiCoCrFeNb0.45 共晶高熵合金在水力机械中的抗空蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
WANG Kai, LI Chenpei, LU Jinling, WANG Zhenjiang, WANG Wei. Cavitation Resistance of NiCoCrFeNb0.45 Eutectic High Entropy Alloy for Hydraulic Machinery. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1079-1086.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.288      或      https://www.jcscp.org/CN/Y2023/V43/I5/1079

图1  喷射空蚀实验装置
图2  喷嘴结构示意图
图3  3种材料的空蚀粗糙度
图4  3种材料空蚀后表面形貌
图5  NiCoCrFeNb0.45表面的损伤特征
图6  试件表面的灰度值分布规律
MaterialStandard deviationEenergyEentropy
NiCoCrFeNb0.4526.8970.0166.458
04Cr13Ni5Mo29.6610.0126.783
45 steel50.1260.0087.289
表1  空蚀形貌灰度特征值提取结果
图7  3种材料的三维空蚀形貌
图8  3种材料表面的蚀坑面积分布
1 Tong Y, Song Q N, Li H L, et al. A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 639
1 佟 瑶, 宋亓宁, 李慧琳 等. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 639
2 Wang J, Liu H L, Dular M. Experiment on cavitation erosion mechanism of centrifugal hydraulic cavitation generator [J]. Trans. CSAE, 2017, 33(14): 49
2 王 健, 刘厚林, Dular M. 离心式水力空化发生器空化空蚀机制试验研究 [J]. 农业工程学报, 2017, 33(14): 49
3 Brijkishore N, Khare R, Prasad V. Prediction of cavitation and its mitigation techniques in hydraulic turbines - A review [J]. Ocean Eng., 2021, 221: 108512
doi: 10.1016/j.oceaneng.2020.108512
4 Luo X W, Ji B, Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. J. Hydrodyn., 2016, 28: 335
doi: 10.1016/S1001-6058(16)60638-8
5 Zhu G J, Li K, Feng J J, et al. Effects of cavitation on pressure fluctuation of draft tube and runner vibration in a Kaplan turbine [J]. Trans. CSAE, 2021, 37(11): 40
5 朱国俊, 李 康, 冯建军 等. 空化对轴流式水轮机尾水管压力脉动和转轮振动的影响 [J]. 农业工程学报, 2021, 37(11): 40
6 Mousmoulis G, Anagnostopoulos J, Papantonis D. A review of experimental detection methods of cavitation in centrifugal pumps and inducers [J]. Int. J. Fluid Mach. Syst., 2019, 12: 71
doi: 10.5293/IJFMS.2019.12.1.071
7 Sun L G, Guo P C, Zheng X B, et al. Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine [J]. Trans. CSAE, 2021, 37(21): 62
7 孙龙刚, 郭鹏程, 郑小波 等. 混流式水轮机叶道空化涡诱发高振幅压力脉动特性 [J]. 农业工程学报, 2021, 37(21): 62
8 Nair R B, Arora H S, Mandal P, et al. Complex concentrated coatings: effect of processing route on microstructural and mechanical properties [J]. Mater. Lett., 2018, 230: 100
doi: 10.1016/j.matlet.2018.07.088
9 Nair R B, Arora H S, Grewal H S. Microwave synthesized complex concentrated alloy coatings: plausible solution to cavitation induced erosion-corrosion [J]. Ultrason. Sonochem., 2019, 50: 114
doi: S1350-4177(18)30515-7 pmid: 30219354
10 Song Q N, Wu Z Y, Li H L, et al. Effect of laser surface melting on cavitation erosion of manganese-nickel-aluminum bronze in 3.5% NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 877
10 宋亓宁, 武竹雨, 李慧琳 等. 激光重熔对高锰铝青铜在3.5%NaCl溶液中空蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 877
doi: 10.11902/1005.4537.2020.201
11 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
12 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
doi: 10.1016/j.actamat.2013.01.042
13 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
doi: 10.1007/s11837-013-0761-6
14 Li R, Ren J, Zhang G J, et al. Novel (CoFe2NiV0.5Mo0.2)100- x Nb x eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1046
doi: 10.1007/s40195-020-01072-6
15 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy [J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
16 Zhao J H, Ma A B, Ji X L, et al. Slurry erosion behavior of Al x CoCrFeNiTi0.5 high-entropy alloy coatings fabricated by laser cladding [J]. Metals, 2018, 8: 126
doi: 10.3390/met8020126
17 Jiang H, Li L, Wang R, et al. Effects of chromium on the microstructures and mechanical properties of AlCoCr x FeNi2.1 eutectic high entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1565
doi: 10.1007/s40195-021-01303-4
18 Lü Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
18 吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
19 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys [J]. Intermetallics, 2015, 60: 1
doi: 10.1016/j.intermet.2015.01.004
20 Xia Y. A study on corrosion detection for Q235 steel in seawater based on image analysis [D]. Dalian: Dalian University of Technology, 2017
20 夏 莹. 基于图像分析的Q235钢海水腐蚀检测技术研究 [D]. 大连: 大连理工大学, 2017
21 Fajardo J I, Paltán C A, López L M, et al. Textural analysis by means of a gray level co-occurrence matrix method. Case: Corrosion in steam piping systems [J]. Mater. Today: Proc., 2022, 49: 149
22 Bondada V, Pratihar D K, Kumar C S. Detection and quantitative assessment of corrosion on pipelines through image analysis [J]. Proc. Comput. Sci., 2018, 133: 804
doi: 10.1016/j.procs.2018.07.115
23 Yang C M. The experimental research of metal surface strengthening of jet cavitation peening [D]. Xuzhou: China University of Mining and Technology, 2014
23 杨春敏. 空化射流喷丸对金属表面性能强化影响的试验研究 [D]. 徐州: 中国矿业大学, 2014
24 Li Z. Feature recognition of corrosion pits and fatigue life prediction for pre-corroded aluminum alloy [D]. Xiamen: Xiamen University, 2014
24 李 智. 铝合金点蚀坑特征识别及其疲劳寿命预测 [D]. 厦门: 厦门大学, 2014
[1] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.