Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 725-736     CSTR: 32134.14.1005.4537.2023.160      DOI: 10.11902/1005.4537.2023.160
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
激光熔覆高温防护涂层研究现状及发展方向
吴多利1, 吴昊天1, 孙珲2(), 史建军3, 魏新龙1, 张超1()
1.扬州大学机械工程学院 扬州 225127
2.山东大学空间科学与物理学院 威海 264209
3.南京工程学院工业中心 南京 211167
Research Status and Development of Laser Cladding High Temperature Protective Coating
WU Duoli1, WU Haotian1, SUN Hui2(), SHI Jianjun3, WEI Xinlong1, ZHANG Chao1()
1.College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
2.School of Space Science and Physics, Shandong University, Weihai 264209, China
3.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China
全文: PDF(1385 KB)   HTML
摘要: 

本文对航空航天、汽车工业和火力发电等领域热端部件高温防护涂层的研究现状和成果进行了总结,分析了激光熔覆制备涂层可能产生的缺陷种类及形成原因,最后指出激光熔覆技术未来发展所面临的困难和挑战,并对该技术的发展方向和趋势进行展望。

关键词 激光熔覆高温防护熔覆裂纹研究现状耐腐蚀    
Abstract

In aerospace, automobile, power generation and other industrial fields, many crucial hot end components such as aviation engine, automobile engine, coal (oil, gas) boiler and turbine blades, valve components, superheater tube etc. are servicing in high temperature-, high pressure-, corrosion-environments for a long time, thus which suffered easily from surface oxidation- or corrosion-damages. The preparation of high temperature protective coating on the surface of those parts is an important technical means to improve their service performance. The mechanical bonding strength of the coating prepared by thermal spraying is not high, and the coating is usually porous. Under the condition of high temperature, corrosion is easy to occur through pores, and even penetrate the coating onto the matrix, which is not conducive to the high temperature corrosion protection of the workpiece. Laser cladding technology is an advanced and rapidly developing surface modification technology, which can make a very strong metallurgical combination for the cladding materials with the matrix, but also has the advantages of coatings with high compactness, low dilution rate, and environmentally friendly etc. This paper first summarizes the research status and achievements of high-temperature protective coatings for hot-end components in industries such as aerospace, automotive, and power generation. Secondly, it analyzes the types of defects that may occur during laser cladding for coating preparation and the cause for their formation. Finally, it points out the difficulties and challenges faced by the future development of laser cladding technology and prospects for its development direction and trend.

Key wordslaser cladding    high temperature protection    laser cladding crack    research status    corrosion resistance
收稿日期: 2023-05-01      32134.14.1005.4537.2023.160
ZTFLH:  TG174  
基金资助:国家自然科学基金(52101100);国家自然科学基金(62004117);江苏省高校自然科学基金(21KJB430008);扬州大学青蓝工程项目(2022);扬州市校合作项目(YZ2021153);国家重点研发计划(2022YFB3706600)
通讯作者: 孙珲,E-mail: huisun@sdu.edu.cn,研究方向为功能涂层与器件;张超,E-mail: zhangc@yzu.edu.cn,研究方向为热喷涂结构与功能涂层   
Corresponding author: SUN Hui, E-mail: huisun@sdu.edu.cn;ZHANG Chao, E-mail: zhangc@yzu.edu.cn   
作者简介: 吴多利,男,1987年生,博士,副教授
孙珲,1985 年出生,2016 年毕业于法国UTBM大学,获博士学位。随后在法国CNRS,FEMTO-ST实验室从 事真空镀膜方面的研究。现就职于山东大学,副研究员,博士生导师,系主任。孙珲博士主要从事半导体 薄膜的光电力学性质的研究。针对p 型透明导电材料在加工使用过程中耐腐蚀性差、膜层易脱落及其p 型 空穴载流子局域性强的问题,通过局域相变、应力调控等方式对膜层的附着强度和耐磨耐蚀性能进行优 化;通过价带修饰、位错演化等途径对半导体薄膜的缺陷形态和载流子产生输运行为进行有效调控,显著 提升材料的光电性能和使用寿命。主持国家自然科学基金、装备预研教育部联合基金等多项国家及省部 级项目。兼任中国腐蚀与防护学会理事、中国机械学会表面工程分会委员以及多个期刊的青年编委。获 得山东大学青年学者未来计划人才项目资助。以第一或通讯作者发表SCI论文44 篇,其中,中科院TOP期刊论文27 篇,1 篇Invited feature article;申请发明专利12 项,授权8 项。曾获得法国优秀博士论文,以第一完成人获得中国腐蚀与防护学会科学技 术一等奖1 项。2023年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 725-736.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.160      或      https://www.jcscp.org/CN/Y2023/V43/I4/725

图1  在Inconel 718合金表面12和20 Hz激光频率下熔覆的Cr3C2+Ni20Cr涂层表面的FE-SEM表面像[19]
图2  球墨铸铁表面30%TiC/钴基合金激光熔覆横截面组织形貌[29]
Laser cladding mode (Preset or feed power)Equipment TypeComposition of Substrate (Sub) and powder material (Pow)Laser cladding parameters:laser power (P), Scanning velocity (V), Powder feed rate (R)

Cladding layer parameters:

Weld width (W), Weld height (H), Dilution rates (η)

Cladding layer phase compositionProperties of cladding layerApplication scenarios
Coaxial powder feeding

YLS-400

fiber laser

Sub: K418 alloy

Pow: Inconel 718

P: 1.2 kW

V: 300 mm/min

R: 25 g/min

W: 1.414 mm

H: 1.537 mm

η: 10.09%

Laves phase, γ" phase and MC type carbide were precipitated at the bottom of the cladding layer.Hot-corrosion resistant; Thermal shock resistantRepair of turbine blades of aeroengines

YLS-3000

fiber laser

Sub: K465 alloy

Pow: nickel-based alloy

P: 2.4 kW

V: 360 mm/min

R: 12 g/min

W: 2.86 mm

H: 0.72 mm

η: 0.27 mm

γ phase, γ' phase, granular carbide and chain carbide in the cladding layer.Hot-corrosion resistant
IPG-YLS-2000-TR fiber laser

Sub: IN718 alloy

Pow: 30%WC + Inconel 718

P: 1.5 kW

V: 450 mm/min

R: 12 g/min

η: 18.51%(Fe, Ni) solid solution phase, Fe3Ni2 phase, (Fe, Cr, Ni)C phase, Ni17W3 phase, WC ceramic particle phase, W2C phase, Fe4W2C phase and Cr4Ni15W phase in the cladding layer.High hardness; Wear resistant; Heat resistantSurface strengthening of turbine disc, combustion chamber and other components of aeroengine
CO2 laser machine

Sub: K438 alloy Pow: CoNiCrAlY+

25%Al2O3

P: 2.5 kW

V: 240 mm/min

R: 0.5 g/min

-There are α-Co phase, α-Al2O3 phase, NiO phase, Cr2O3 phase, γ-(Ni, Cr) phase, γ'-Ni3Al phase and (Co, Ni)(Al, Cr)2O4 phase in the cladding layer.High temperature oxidation resistant

FL-Dlight3-2000

semiconductor laser unit

Sub: 304 steel

Pow: Ni60AA

P: 2.5 kW

V: 240 mm/min

R: 18 g/min

W: 14.85 mm

H: 1.68 mm

η: 13.49%

γ-(Ni, Fe) solid solution phase, FeNi3 ductile phase and Cr23C6 carbide in the cladding layer.

High hardness;

Wear resistant;

Corrosion resistant

Surface strengthening and repair of automotive engine valve components

IPG

fiber laser

Sub: 2Cr25Ni20 steel Pow: Inconel 718

P: 1.4 kW

V: 600 mm/min

R: 1.8 r/min

-Precipitated phase of cladding layer is Laves phase and a small amount of carbide.

High hardness;

Wear resistant;

Surface strengthening of feed inlet rotating shaft in steel mill

LDF400-2000

Fiber coupled semiconductor laser

Sub: Inconel718 alloy

Pow:Inconel 939

P: 0.9 kW

V: 240 mm/min

R: 14 g/min

η: 24.2 %Physical phases in the cladding layer include γ phase matrix, MC type carbide and a small amount of γ' phase.High hardness; Corrosion resistantRepair of gas turbine blades
Coaxial powder feeding

LDF4000-100

semiconductor laser unit

Sub: 304 steel

Pow: NiCoCrAlY

P: 1.5 kW

V: 600 mm/min

R: 4.5 g/min

W: 3.6 mm

H: 0.4 mm

η: 57.4%

Phases in the cladding layer include γ/γ' phase, β phase and β-NiAl phase.Wear resistant; High temperature oxidation resistantCoating thermal protection of steam turbine hot components

LDF4000-100

semiconductor laser unit

Sub: 316 steel

Pow: FeCrAlSi

P: 1.6 kW

V: 420 mm/min

R: 5.4 g/min

W: 3.494 mm

H: 0.588 mm

η: 40.4%

Cladding layer consists of Fe-Cr solid solution phase and AlFe intermetallic compound.High hardness; Wear resistant; Hot-corrosion resistant;Surface modification of boiler pipe in power plant
Powder presetting

GS-TFL-6000

CO2 laser machine

Sub: TC6 alloy

Pow: Ti-Al-20Cr

P: 4.1 kW

V: 350 mm/min

η: <8%Cladding layer is mainly composed of matrix structure and a large amount of silver-white material without obvious segregation phenomenon.High temperature oxidation resistantRepair of aero-engine compressor disc and blade

LDF-4000-100

semiconductor laser unit

Sub: TC4 alloy

Pow: CoCrFeNi2V0.5Ti0.5

P: 0.8 kW

V: 300 mm/min

-Physical phases in the cladding layer include BCC phase, (Ni, Co)Ti2 phase and α-Ti enriched phase.

High hardness;

Wear resistant;

Surface modification of hot end components in aero-engines and automotive engines

Sub: TC4 alloy

Pow: CoCrFeNi2Mo0.5

P: 1 kW

V: 300 mm/min

Phases in the cladding layer include BCC phase, (Ni, Co)Ti2 phase, α-Ti phase and FeCrMo type σ phase.

Lasertel 8 kW

semiconductor laser unit

Sub: TC4 alloy

Pow: TC4+10%hBN

P: 4 kW

V: 900 mm/min

-Cladding layer consists of TiB phase and TiN phase distributed in α-Ti matrix

Sub: TC4 alloy

Pow: TC4+10%Ni/B4C

P: 4 kW

V: 480 mm/min

Cladding layer is composed of NiTi2 phase, dendritic phase, TiB phase, TiC phase, TiB2 and incomplete decomposed B4C embedded in α-Ti matrix.

GS-TEL-6000A

Multi-mode cross-flow CO2 laser

Sub: TC4 alloy Pow: AlMoNbTiV

P: 3.7 kW

V: 600 mm/min

-Cladding layer is mainly composed of BCC phase and a small amount of TiAl intermetallic compounds.High temperature oxidation resistant

LWS-1000

Nd: YAG laser

Sub: 304 steel Pow: FeCoCuAlNiNb0.5

P: 0.2 kW

V: 420 mm/min

η: 15%Phase in cladding layer includes BCC phase, FCC phase and Laves phase.

Wear resistant;

Corrosion resistant

Surface strengthening and repair of automotive engine valve components
表1  激光熔覆在高温防护涂层方面的应用实例
1 Huebner J, Kata D, Kusiński J, et al. Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application [J]. Ceram. Int., 2017, 43: 8677
doi: 10.1016/j.ceramint.2017.03.194
2 Bu R, Jin A X, Sun Q, et al. Study on laser cladding and properties of AZ63-Er alloy for automobile engine [J]. J. Mater. Res. Technol., 2020, 9: 5154
doi: 10.1016/j.jmrt.2020.03.032
3 Wang Y F, Zhao X Y, Lu W J, et al. Microstructure and properties of high speed laser cladding stainless steel coating on sucker rod coupling surface [J]. Chin. J. Lasers, 2021, 48(6): 0602114
3 王彦芳, 赵晓宇, 陆文俊 等. 抽油杆接箍表面高速激光熔覆不锈钢涂层的组织与性能 [J]. 中国激光, 2021, 48(6): 0602114
4 Singh A, Sharma V, Mittal S, et al. An overview of problems and solutions for components subjected to fireside of boilers [J]. Int. J. Ind. Chem., 2018, 9: 1
doi: 10.1007/s40090-017-0133-0
5 Chen Y, Zhang K H, Wen M, et al. Investigation status and development of high-temperature coating [J]. Precious Met., 2013, 34(S1): 108
5 陈 勇, 张昆华, 闻 明 等. 高温涂层发展与研究现状 [J]. 贵金属, 2013, 34(S1): 108
6 Huang Y C, Zhang J Q. Modern materials corrosion and protection [M]. Shanghai: Shanghai Jiaotong University Press, 2012: 13
6 黄永昌, 张建旗. 现代材料腐蚀与防护 [M]. 上海: 上海交通大学出版社, 2012: 13
7 Zhang J C, Shi S H, Gong Y Q, et al. Research progress in laser cladding technology [J]. Surf. Technol., 2020, 49(10): 1
7 张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展 [J]. 表面技术, 2020, 49(10): 1
8 Yang N, Yang F. Development and application of laser cladding technology [J]. Hot Work. Technol., 2011, 40(8): 118
8 杨 宁, 杨 帆. 激光熔覆技术的发展现状及应用 [J]. 热加工工艺, 2011, 40(8): 118
9 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
10 Liu C M, Li C G, Zhang Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Opt. Laser Technol., 2020, 123: 105926
doi: 10.1016/j.optlastec.2019.105926
11 Wang Y, Zhou X F. Research front and trend of specific laser additive manufacturing techniques [J]. Laser Technol., 2021, 45: 475
11 王 勇, 周雪峰. 激光增材制造研究前沿与发展趋势 [J]. 激光技术, 2021, 45: 475
12 Chen J, Yan F X. The selection of thermal protection materials based on laser cladding technology [J]. Mater. Rep., 2018, 32(S2): 322
12 陈 晶, 颜飞雪. 基于激光熔覆技术的热防护材料选择 [J]. 材料导报, 2018, 32(S2): 322
13 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
13 余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
14 Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 °C and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
14 尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
15 Li W H, Wen X J, Li X H, et al. Application and development trend of aero-engine blade remanufacturing technology [J]. Diamond Abrasives Eng., 2021, 41(4): 8
15 李文辉, 温学杰, 李秀红 等. 航空发动机叶片再制造技术的应用及其发展趋势 [J]. 金刚石与磨料磨具工程, 2021, 41(4): 8
16 Xu J, Zhou J Y, Ren W B, et al. Inconel 718 coating process for laser remanufacturing three-dimensional forming of K418 blades [J]. Laser Optoelectron. Prog., 2020, 57(3): 132
16 徐 杰, 周金宇, 任维彬 等. Inconel 718覆层工艺用于K418叶片激光再制造立体成形 [J]. 激光与光电子学进展, 2020, 57(3): 132
17 Xu X Y, Cao Y, Wang H, et al. Experimental research on mechanical properties of the blade transition zone by laser cladding repair process [J]. Mod. Manuf. Eng., 2021, (9): 118
17 徐翔宇, 曹 阳, 王 辉 等. 激光熔覆修复叶片的过渡区力学性能试验研究 [J]. 现代制造工程, 2021, (9): 118
18 Cao Y, Farouk N, Taheri M, et al. Evolution of solidification and microstructure in laser-clad IN625 superalloy powder on GTD-111 superalloy [J]. Surf. Coat. Technol., 2021, 412: 127010
doi: 10.1016/j.surfcoat.2021.127010
19 Khorram A, Jamaloei A D, Jafari A, et al. Microstructural evolution of laser-clad 75Cr3C2+25(80Ni20Cr) powder on Inconel 718 superalloy [J]. J. Mater. Process. Technol., 2020, 284: 116735
doi: 10.1016/j.jmatprotec.2020.116735
20 Ansari M, Shoja-Razavi R, Barekat M, et al. High-temperature oxidation behavior of laser-aided additively manufactured NiCrAlY coating [J]. Corros. Sci., 2017, 118: 168
doi: 10.1016/j.corsci.2017.02.001
21 Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools Manuf., 2021, 170: 103804
doi: 10.1016/j.ijmachtools.2021.103804
22 Yadav S, Paul C P, Jinoop A N, et al. Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations [J]. J. Manuf. Process., 2020, 58: 984
doi: 10.1016/j.jmapro.2020.09.008
23 Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based Superalloys [J]. Chin. J. Mech. Eng. Addit. Manuf. Front., 2022, 1: 100019
24 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
doi: 10.1016/j.matdes.2018.10.042
25 Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
26 Arif Z U, Khalid M Y, Rehman E U, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications [J]. J. Manuf. Process., 2021, 68: 225
doi: 10.1016/j.jmapro.2021.06.041
27 Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation- and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
27 裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
28 Tang L P, Liu H X, Li X F. Effects of B4C on microstructure and properties of laser cladding coating for automobile cylinder [J]. Hot Work. Technol., 2016, 45(14): 124
28 唐利平, 刘海雄, 李雪丰. B4C对汽车缸套激光熔覆修复涂层组织与性能的影响 [J]. 热加工工艺, 2016, 45(14): 124
29 Tong W H, Zhao Z L, Zhang X Y, et al. Microstructure and properties of TiC/Co-based alloy by laser cladding on the surface of nodular graphite cast iron [J]. Acta Metall. Sin., 2017, 53: 472
29 童文辉, 赵子龙, 张新元 等. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究 [J]. 金属学报, 2017, 53: 472
doi: 10.11900/0412.1961.2016.00288
30 Wang Q M. Study on laser cladding coating on automobile engine valve surface [D]. Jinan: University of Jinan, 2021
30 王启蒙. 汽车发动机气门表面激光熔覆涂层研究 [D]. 济南: 济南大学, 2021
31 Liu J. Study on strengthening technology of laser cladding Ni-based WC cladding on the surface of valve steel [D]. Qingdao: Qingdao University of Technology, 2021
31 刘 佳. 气阀钢表面激光熔覆Ni基WC熔覆层的强化工艺研究 [D]. 青岛: 青岛理工大学, 2021
32 Xu Y, Li C, Jia T H, et al. Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron [J]. Surf. Technol., 2022, 51(7): 377
32 许 彦, 李 昌, 贾腾辉 等. QT600球墨铸铁激光熔覆数值模拟与实验研究 [J]. 表面技术, 2022, 51(7): 377
33 Chen J, Pu X X, Zhang J B, et al. Laser repair of turbine disc of a locomotive internal combustion engine turbocharger [J]. China Surf. Eng., 2014, 27(2): 110
33 陈 江, 朴新欣, 张静波 等. 机车内燃机涡轮增压器涡轮盘的激光修复 [J]. 中国表面工程, 2014, 27(2): 110
34 Jin Y P. Study on Influencing factors of laser cladding repair of K418 superalloy blade [D]. Beijing: Beijing University of Technology, 2017
34 靳延鹏. K418高温合金叶片激光熔覆修复的影响因素研究 [D]. 北京: 北京工业大学, 2017
35 Xu S M, Sun W H, Wu W J. Application and prospect of laser cladding technology in auto remanufacturing field [J]. Hot Work. Technol., 2017, 46(22): 33
35 徐素明, 孙维汉, 武文娟. 激光熔覆技术在汽车再制造领域的应用及前景 [J]. 热加工工艺, 2017, 46(22): 33
36 Qu Z P, Zhang B B, Xie G X, et al. Research progress on protection technology for waste incinerator heating surfaces [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 452
36 曲作鹏, 张贝贝, 谢广校 等. 垃圾焚烧炉受热面防护技术的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 452
doi: 10.11902/1005.4537.2022.237
37 Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
37 官宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
doi: 10.11902/1005.4537.2021.155
38 Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
38 王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
39 Yang Y X. Study on microstructure and hot corrosion performance of laser cladding FeCrAlSi coating on 316 stainless steel [D]. Taiyuan: North University of China, 2021
39 杨宜鑫. 316不锈钢表面激光熔覆FeCrAlSi涂层的组织及热腐蚀性能研究 [D]. 太原: 中北大学, 2021
40 Zhang K, Huang C, Xiong J Z, et al. High-temperature corrosion resistance of laser cladding NiCrMo alloy coating on 15CrMo steel tube surface for waste incinerator [J]. Mater. Mech. Eng., 2021, 45(11): 29
40 张昆, 黄灿, 熊嘉政 等. 垃圾焚烧炉15CrMo钢管表面激光熔覆NiCrMo合金涂层的耐高温腐蚀性能 [J]. 机械工程材料, 2021, 45(11): 29
doi: 10.11973/jxgccl202111006
41 Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
41 韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
42 Li X Z, Liu Z D, Li H C, et al. Investigations on the behavior of laser cladding Ni-Cr-Mo alloy coating on TP347H stainless steel tube in HCl rich environment [J]. Surf. Coat. Technol., 2013, 232: 627
doi: 10.1016/j.surfcoat.2013.06.048
43 Wang K L, Zang Q B, Wei X G, et al. Effect of La2O3 on corrosion resistance of laser clad Ni-based alloy coatings [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 237
43 王昆林, 张庆波, 魏兴国 等. La2O3对镍基合金激光熔覆层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 237
44 Cheng R. Research of technology and properties of laser cladding on Ni/Al2O3-La2O3 surface of 38CrMoAl steel [D]. Nanchang: East China Jiaotong University, 2009
44 程锐. 38CrMoAl表面激光熔覆Ni/Al2O3-La2O3工艺与熔覆层性能研究 [D]. 南昌: 华东交通大学, 2009
45 Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020: 8690428
46 Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: a review [J]. Laser Optoelectron. Progress, 2021, 58: 0700006
46 陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
47 Hou S X, Zhao J K, Li Q, et al. Study on the influencing factors of laser cladding defects [J]. Mater. Rep., 2022, 36(S1): 388
47 侯锁霞, 赵江昆, 李强 等. 对激光熔覆形成缺陷的影响因素的探究 [J]. 材料导报, 2022, 36(S1): 388
48 Li G Q, Wang L F, Zhao L, et al. Research progress on crack problem of laser cladding layer [J]. Hot Work. Technol., 2021, 50(16): 13
48 李广琪, 王丽芳, 赵亮 等. 激光熔覆层裂纹问题的研究进展 [J]. 热加工工艺, 2021, 50(16): 13
49 Wang W, Sun W L, Zhou H N, et al. Study on crack formation mechanism and matching method of laser cladding nickel-based alloy coating [J]. Hot Work. Technol., 2022, 51(14): 83
49 王伟, 孙文磊, 周浩南 等. 激光熔覆镍基合金涂层裂纹形成机理及匹配方法的研究 [J]. 热加工工艺, 2022, 51(14): 83
50 Barr C, Sun D S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surf. Coat. Technol., 2018, 340: 126
doi: 10.1016/j.surfcoat.2018.02.052
51 Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
51 王冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
52 Ya W, Pathiraj B, Matthews D T A, et al. Cladding of Tribaloy T400 on steel substrates using a high power Nd:YAG laser [J]. Surf. Coat. Technol., 2018, 350: 323
doi: 10.1016/j.surfcoat.2018.06.069
53 Zhang M, Liu S S, Luo S X, et al. Effect of molybdenum on the high-temperature properties of TiC-TiB2 reinforced Fe-based composite laser cladding coatings [J]. J. Alloy. Compd., 2018, 742: 383
doi: 10.1016/j.jallcom.2018.01.275
54 Qi J B. Study on Ultrasonic assisted laser cladding of Ni60 coating [D]. Jinzhou: Liaoning University of Technology, 2021
54 靳继波. 超声辅助激光熔覆Ni60涂层工艺研究 [D]. 锦州: 辽宁工业大学, 2021
[1] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[3] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[4] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[5] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[6] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[7] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[8] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[9] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[11] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[12] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[13] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[14] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[15] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.