Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 713-724     CSTR: 32134.14.1005.4537.2023.157      DOI: 10.11902/1005.4537.2023.157
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制
肖檬1, 王勤英1(), 张兴寿1, 西宇辰1(), 白树林2, 董立谨1, 张进1, 杨俊杰3
1.西南石油大学新能源与材料学院 成都 610500
2.北京大学材料科学与工程学院 北京 100871
3.成都中原总机石油机械有限公司 成都 610400
Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel
XIAO Meng1, WANG Qinying1(), ZHANG Xingshou1, XI Yuchen1(), BAI Shulin2, DONG Lijin1, ZHANG Jin1, YANG Junjie3
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.School of Materials Science and Engineering, Peking University, Beijing 100871, China
3.Chengdu Zhongyuan Petroleum Machinery Co., Ltd., Chengdu 610400, China
全文: PDF(26576 KB)   HTML
摘要: 

为改善AISI 4130钢表面硬度和腐蚀磨损性能,用高功率激光器在AISI 4130钢表面制备淬火层,利用扫描电镜 (SEM) 和X射线衍射仪 (XRD) 研究不同功率淬火试样的微观结构,利用电化学工作站分析淬火前后试样的耐蚀性能,利用维氏显微硬度仪对淬火试样截面进行硬度测试,采用往复摩擦磨损试验机,测试不同淬火试样的耐磨损性能。结果表明,激光淬火后AISI 4130钢表面主要为马氏体组织和富Cr碳化物颗粒。基材、2.0 kW淬火试样及2.2 kW淬火试样的维钝电流密度依次为60.00、102.28 和108.58 µA/cm2,淬火试样的耐蚀性降低。 激光处理后,淬火层表面硬度提高了85%以上,AISI 4130钢基体与2.0和2.2 kW激光淬火试样的平均摩擦系数分别为0.366、0.293和0.195,摩擦系数下降,淬火试样的耐磨性提高。

关键词 激光淬火AISI 4130钢微观组织耐蚀性耐磨性    
Abstract

Laser quenching technology is widely used as a means for the strengthening in the field of metallic materials. Laser quenched materials have the advantages of high precision, small heat affected zone, uniform carbide dispersion and finer grains. In order to improve the surface hardness and wear resistance of AISI 4130 steel used in petroleum field, a high hardness and high wear resistance quenching layer was prepared on the surface of AISI 4130 steel by laser quenching technology. The effect of quenching power on the microstructure evolution, corrosion resistance, microhardness and wear resistance of AISI4130 steel were investigated. AISI4130 steel samples of 10 mm×10 mm×8 mm (L×W×H) were prepared by wire cut electric discharge machine. The quenching layer was prepared on the surface of AISI 4130 steel by high power laser. The microstructure and element distribution characteristics of the steel quenched with different power was studied by scanning electron microscope (SEM) with EDS and X-ray diffractometer (XRD). The corrosion resistance of the steel before and after quenching was assessed by electrochemical workstation and immersion test. The hardness of quenched steels was measured by Vickers microhardness tester. The wear resistance of different quenched steels was tested by reciprocating friction and wear tester, while the wear scratch morphology was analyzed by three-dimensional optical microscope. After laser quenching, the surface microstructure of AISI 4130 steel was obviously refined and composed of mainly martensite and Cr-rich carbide particles. The thickness of the heat affected zone of the steels of laser quenched at 2.0 and 2.2 kW was 501.5 and 553.6 μm, respectively. The impedance arc radius of the bare AISI 4130 steel and two quenched steels may be ranked as the following: 2.2 kW quenched >2.0 kW quenched >substrate. The passive current density of the bare steel, 2.0 kW- and 2.2 kW-quenched steel was 60.00,102.28 and 108.58 μA/cm2, respectively. The passivation current density of the two quenched steels was about 1.7 times that of the bare one. After quenching, the surface hardness of the steel increased by more than 85%. The average friction coefficient of the bare AISI 4130 steel and 2.0 kW- and 2.2 kW-laser quenched ones was 0.366, 0.293 and 0.195, respectively. Compared with the bare steel, the volume wear rate of 2.0 kW- and 2.2 kW-laser quenched ones was reduced by 25% and 36%, respectively. The wear resistance of quenched steels increased by 20% and 47%, respectively. The corrosion resistance of the quenched steels is reduced, but the corrosion resistance of the 2.0 kW quenched steel is better than that of the 2.2 kW ones. The precipitation of Cr-rich carbide particles in the steel will aggravate the destruction of the corrosion product film, resulting in a decrease in the corrosion resistance of the quenched steel. The higher the carbide content on the surface of the quenched steel, the more difficult it is to cut the convex surface of the abrasive into a tough phase and the wear rate of the sample surface decreases, thereby improving the overall wear resistance of the material.

Key wordslaser quenching    AISI 4130 steel    microstructure    corrosion resistance    wear resistance
收稿日期: 2023-05-11      32134.14.1005.4537.2023.157
ZTFLH:  TG178  
基金资助:国家自然科学基金(52174007);国家自然科学基金(51801167);四川省省院省校科技合作研发项目(23SYSX0127)
通讯作者: 王勤英,E-mail: wangqy0401@swpu.edu.cn,研究方向为激光增材再制造,油气田材料腐蚀与防护;西宇辰,E-mail: xycsony3@126.com,研究方向为油气田材料腐蚀与防护   
Corresponding author: WANG Qin-ying, E-mail: wangqy0401@swpu.edu.cn;XI Yu-chen, E-mail: xycsony3@126.com   
作者简介: 肖檬,女,1999年生,硕士生
王勤英,1987 年生,2015 年7 月毕业于北京大学,获理学博士学位,后于加拿大阿尔伯塔大学从事博士后研 究工作。现就职于西南石油大学,教授,院长助理。王勤英博士长期从事油气装备激光修复研究。率先引 入SHAP和ALE可解释方法阐明了环境因素间的交互效应及其对油气田材料点蚀的作用规律,揭示了复 杂油气钻采环境对激光修复层不同熔覆区表面钝化膜稳定性的影响机制,形成了油气装备高耐蚀耐磨激 光修复全流程工艺。先后主持国家自然科学基金面上项目、青年基金等科研项目10 项,成果在npj Mat. Degrad. 等期刊发表学术论文45 篇,授权专利3 件。成果应用于油田及油服企业,解决了油气装备修复难、 耐蚀耐磨性差的技术难题,获中国石油和化工自动化行业科技进步二等奖等科研奖励共3 项。入选中国科 协“青年人才托举工程”、澳大利亚教育部“奋进”学者、四川省学术和技术带头人后备人选,现为校青年科技创新团队带头人。 兼任中国腐蚀与防护学会青年工作委员会委员,中国腐蚀与防护学会磨蚀与防护技术专委会、非金属耐蚀材料及先进制备技 术专委会委员,四川省腐蚀与防护学会理事,《中国腐蚀与防护学报》等期刊的编委或青年编委。2023 年获得中国腐蚀与防护 学会杰出青年成就奖。

引用本文:

肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 713-724.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.157      或      https://www.jcscp.org/CN/Y2023/V43/I4/713

图1  激光表面淬火示意图
图2  AISI 4130钢基材与淬火试样的表面微观结构
图3  AISI 4130钢2 kW激光淬火后截面的微观组织
图4  AISI 4130钢2.2 kW激光淬火后截面的微观组织
图5  AISI 4130钢淬火后截面元素分布特征
图6  AISI 4130钢基材与LQ试样的XRD谱
图7  AISI 4130钢基材与2.0 kW、2.2 kW功率LQ试样的EIS图
Laser power / kWRs / Ω·cm2Y / Ω-1·cm-2·s-nnRf / Ω·cm2L / H·cm2Rct / Ω·cm2
As-received2.8885.36×10-50.80112443714738
2.02.34128.00×10-50.79300533431326
2.22.33145.70×10-50.78102935582598
表2  AISI 4130钢在不同激光功率下阻抗拟合数据
图8  AISI 4130钢基材与2.0和2.2 kW功率LQ试样的动电位极化曲线
图9  AISI 4130钢在2.0和2.2 kW功率LQ后的截面显微硬度分布特征
图10  AISI 4130钢基材与2.0和2.2 kW功率LQ后试样的摩擦系数
图11  浸泡24 h后的表面微观形貌及截面元素分布
图12  AISI 4130钢基材和淬火试样的腐蚀机理示意图
图13  AISI 4130钢磨损划痕及元素分布
图14  AISI 4130钢磨损后3D形貌
图15  AISI 4130钢基材和淬火试样的磨损机理示意图
1 Zhou C, Ye Q B, Tian Y, et al. Research and application progress of ultra-high strength structural steel [J]. Trans. Mater. Heat Treat., 2021, 42(1): 14
1 周 成, 叶其斌, 田 勇 等. 超高强度结构钢的研究及发展 [J]. 材料热处理学报, 2021, 42(1): 14
2 Wang H L, Wang L, Liu L X. Invalid analysis of 35CrMo steel drill pipe thread fracture used in engineering [J]. China Heavy Equip., 2015, (1):32
2 王洪礼, 王 凌, 刘立新. 工程用35CrMo钢钻杆螺纹断裂失效分析 [J]. 中国重型装备, 2015, (1): 32
3 Yang J L, Huang M, Hu L Y, et al. Effect of high-power laser quenching on microstructure and wear resistance of 35CrMo steel surface layer [J]. Mater. Mech. Eng., 2022, 46(2):63
doi: 10.11973/jxgccl202202010
3 杨俊龙, 黄 敏, 胡柳益 等. 高功率激光淬火对35CrMo钢表层组织与耐磨性能的影响 [J]. 机械工程材料, 2022, 46(2): 63
doi: 10.11973/jxgccl202202010
4 Manna I, Majumdar J D, Chatterjee U K, et al. Laser surface engineering of copper with chromium for enhanced wear resistance [J]. Scr. Mater., 1996, 35: 405
doi: 10.1016/1359-6462(96)00149-2
5 Ge P F. Application of laser quenching in surface hardening treatment of drill pipe joint thread [J]. Inner Mongolia Petrochem. Ind., 2015, 41(1):119
5 葛鹏飞. 激光淬火技术在钻杆接头螺纹表面硬化处理的应用 [J]. 内蒙古石油化工, 2015, 41(1): 119
6 Zhang T, Fan Q, Ma X L, et al. Microstructure and mechanical properties of Ti-35Nb-2Ta-3Zr alloy by laser quenching [J]. Front. Mater., 2019, 6: 318
doi: 10.3389/fmats.2019.00318
7 Carrera-Espinoza R, Rojo Valerio A, del Prado Villasana J, et al. Surface laser quenching as an alternative method for conventional quenching and tempering treatment of 1538 MV steel [J]. Adv. Mater. Sci. Eng., 2020, 2020: 7950684
8 Liu J, Wang C, Zhong J, et al. Microstructure and properties of 45 steel after laser transformation hardening and induction heating surface hardening [J]. Trans. Mater. Heat Treat., 2018, 39(11): 58
8 刘 杰, 王 程, 钟 洁 等. 45钢激光相变硬化和感应加热表面淬火硬化后的组织和性能 [J]. 材料热处理学报, 2018, 39(11): 58
9 Ma K, Yang Y L, Wang C S, et al. Effect of laser hardening technical parameters on hardened depth of 40Cr steel [J]. Laser Technol., 2002, 26: 262
9 马 奎, 杨蕴林, 王长生 等. 激光淬火工艺参数对40Cr钢淬硬层深的影响 [J]. 激光技术, 2002, 26: 262
10 Chen C L, Feng A X, Liu B J, et al. Effect of quench-tempering and laser quenching on the microstructure and properties of high-chromium cast iron [J]. J. Mater. Res. Technol., 2022, 19: 2759
doi: 10.1016/j.jmrt.2022.06.022
11 Zhang Y P, Zhan D P, Qi X W, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1240
doi: 10.1016/j.jmst.2019.01.009
12 Xu H W, Chen W W, Zhou K, et al. Temperature field computation for a rotating cylindrical workpiece under Laser quenching [J]. Int. J. Adv. Manuf. Technol., 2010, 47: 679
doi: 10.1007/s00170-009-2206-5
13 Li Z X, Tong B Q, Zhang Q L, et al. Microstructure refinement and properties of 1.0C-1.5Cr steel in a duplex treatment combining double quenching and laser surface quenching [J]. Mater. Sci. Eng., 2020, 776A: 138994
14 Pantelis D I, Bouyiouri E, Kouloumbi N, et al. Wear and corrosion resistance of laser surface hardened structural steel [J]. Surf. Coat. Technol., 2002, 161: 125
doi: 10.1016/S0257-8972(02)00495-4
15 Yang Z, Fan X F, Qiu C J, et al. Effect of laser power on quenched microstructure and friction and wear properties of 40CrNiMoA steel [J]. Heat Treat. Met., 2020, 45(3): 128
doi: 10.13251/j.issn.0254-6051.2020.03.025
15 杨 振, 樊湘芳, 邱长军 等. 激光功率对40CrNiMoA钢表面淬火组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(3): 128
16 Si Z W, Yuan N B, Fu H G. Effect of quenching and partitioning process on microstructure and properties of Mn-Si-Cr steel [J]. J. Mater. Eng. Perform., 2022, 31: 8655
doi: 10.1007/s11665-022-06871-9
17 Moradi M, Karami Moghadam M, Kazazi M. Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating [J]. Optik, 2019, 178: 614
doi: 10.1016/j.ijleo.2018.10.036
18 Ameri M H, Ghaini F M, Torkamany M J. Investigation into the efficiency of a fiber laser in surface hardening of ICD-5 tool steel [J]. Opt. Laser Technol., 2018, 107: 150
doi: 10.1016/j.optlastec.2018.05.030
19 Liu Y, Tian Y P, Zhang H, et al. Microstructure and properties of Cr12MoV die steel by laser quenching with different power [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 631: 022032
20 Wang J C, Du C Y, Wang Z, et al. Study on microstructure and properties of 32CrNi3MoVE steel by laser surface quenching [J]. Hot Work. Technol., 2023, 52(2): 62
20 王金川, 杜春燕, 王 震 等. 32CrNi3MoVE钢激光表面淬火显微组织和性能研究 [J]. 热加工工艺, 2023, 52(2): 62
21 Kong D C, Dong C F, Ni X Q, et al. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment [J]. Corros. Sci., 2020, 166: 108425
doi: 10.1016/j.corsci.2019.108425
22 Telasang G, Dutta Majumdar J, Padmanabham G, et al. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel [J]. Surf. Coat. Technol., 2015, 261: 69
doi: 10.1016/j.surfcoat.2014.11.058
23 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
23 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
24 Liu Z H, Gao Z M, Lv C T, et al. Research on the correlation between impact toughness and corrosion performance of Cr13 super martensitic stainless steel under deferent tempering condition [J]. Mater. Lett., 2021, 283: 128791
doi: 10.1016/j.matlet.2020.128791
25 Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
25 王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
26 Wei G Y, Lu S Y, Li S X, et al. Unmasking of the temperature window and mechanism for “loss of passivation” effect of a Cr-13 type martensite stainless steel [J]. Corros. Sci., 2020, 177: 108951
doi: 10.1016/j.corsci.2020.108951
27 Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
28 Liang J H, Gao H L, Xiang S B, et al. Research on tool wear morphology and mechanism during turning nickel-based alloy GH4169 with PVD-TiAlN coated carbide tool [J]. Wear, 2022, 508/509: 204468
29 Sharma S, Sangal S, Mondal K. On the optical microscopic method for the determination of ball-on-flat surface linearly reciprocating sliding wear volume [J]. Wear, 2013, 300: 82
doi: 10.1016/j.wear.2013.01.107
30 Nagai A, Tsutsumi Y, Suzuki Y, et al. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks’ solution [J]. Appl. Surf. Sci., 2012, 258: 5490
doi: 10.1016/j.apsusc.2012.02.057
31 Welsh N C. The dry wear of steels II. Interpretation and special features [J]. Philos. Trans. Roy. Soc., 1965, 257A: 51
32 Zhang F C, Lei T Q. A study of friction-induced martensitic transformation for austenitic manganese steel [J]. Wear, 1997, 212: 195
doi: 10.1016/S0043-1648(97)00156-7
33 Han B, Li M Y, Wang Y. Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel [J]. J. Mater. Eng. Perform., 2013, 22: 3749
doi: 10.1007/s11665-013-0708-7
[1] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[2] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[3] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[4] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[5] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[6] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[7] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[8] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[9] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[10] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[11] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[12] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[13] 李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[14] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[15] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.