|
|
激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制 |
肖檬1, 王勤英1( ), 张兴寿1, 西宇辰1( ), 白树林2, 董立谨1, 张进1, 杨俊杰3 |
1.西南石油大学新能源与材料学院 成都 610500 2.北京大学材料科学与工程学院 北京 100871 3.成都中原总机石油机械有限公司 成都 610400 |
|
Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel |
XIAO Meng1, WANG Qinying1( ), ZHANG Xingshou1, XI Yuchen1( ), BAI Shulin2, DONG Lijin1, ZHANG Jin1, YANG Junjie3 |
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.School of Materials Science and Engineering, Peking University, Beijing 100871, China 3.Chengdu Zhongyuan Petroleum Machinery Co., Ltd., Chengdu 610400, China |
引用本文:
肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
XIAO Meng,
WANG Qinying,
ZHANG Xingshou,
XI Yuchen,
BAI Shulin,
DONG Lijin,
ZHANG Jin,
YANG Junjie.
Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 713-724.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2023.157
或
https://www.jcscp.org/CN/Y2023/V43/I4/713
|
1 |
Zhou C, Ye Q B, Tian Y, et al. Research and application progress of ultra-high strength structural steel [J]. Trans. Mater. Heat Treat., 2021, 42(1): 14
|
1 |
周 成, 叶其斌, 田 勇 等. 超高强度结构钢的研究及发展 [J]. 材料热处理学报, 2021, 42(1): 14
|
2 |
Wang H L, Wang L, Liu L X. Invalid analysis of 35CrMo steel drill pipe thread fracture used in engineering [J]. China Heavy Equip., 2015, (1):32
|
2 |
王洪礼, 王 凌, 刘立新. 工程用35CrMo钢钻杆螺纹断裂失效分析 [J]. 中国重型装备, 2015, (1): 32
|
3 |
Yang J L, Huang M, Hu L Y, et al. Effect of high-power laser quenching on microstructure and wear resistance of 35CrMo steel surface layer [J]. Mater. Mech. Eng., 2022, 46(2):63
doi: 10.11973/jxgccl202202010
|
3 |
杨俊龙, 黄 敏, 胡柳益 等. 高功率激光淬火对35CrMo钢表层组织与耐磨性能的影响 [J]. 机械工程材料, 2022, 46(2): 63
doi: 10.11973/jxgccl202202010
|
4 |
Manna I, Majumdar J D, Chatterjee U K, et al. Laser surface engineering of copper with chromium for enhanced wear resistance [J]. Scr. Mater., 1996, 35: 405
doi: 10.1016/1359-6462(96)00149-2
|
5 |
Ge P F. Application of laser quenching in surface hardening treatment of drill pipe joint thread [J]. Inner Mongolia Petrochem. Ind., 2015, 41(1):119
|
5 |
葛鹏飞. 激光淬火技术在钻杆接头螺纹表面硬化处理的应用 [J]. 内蒙古石油化工, 2015, 41(1): 119
|
6 |
Zhang T, Fan Q, Ma X L, et al. Microstructure and mechanical properties of Ti-35Nb-2Ta-3Zr alloy by laser quenching [J]. Front. Mater., 2019, 6: 318
doi: 10.3389/fmats.2019.00318
|
7 |
Carrera-Espinoza R, Rojo Valerio A, del Prado Villasana J, et al. Surface laser quenching as an alternative method for conventional quenching and tempering treatment of 1538 MV steel [J]. Adv. Mater. Sci. Eng., 2020, 2020: 7950684
|
8 |
Liu J, Wang C, Zhong J, et al. Microstructure and properties of 45 steel after laser transformation hardening and induction heating surface hardening [J]. Trans. Mater. Heat Treat., 2018, 39(11): 58
|
8 |
刘 杰, 王 程, 钟 洁 等. 45钢激光相变硬化和感应加热表面淬火硬化后的组织和性能 [J]. 材料热处理学报, 2018, 39(11): 58
|
9 |
Ma K, Yang Y L, Wang C S, et al. Effect of laser hardening technical parameters on hardened depth of 40Cr steel [J]. Laser Technol., 2002, 26: 262
|
9 |
马 奎, 杨蕴林, 王长生 等. 激光淬火工艺参数对40Cr钢淬硬层深的影响 [J]. 激光技术, 2002, 26: 262
|
10 |
Chen C L, Feng A X, Liu B J, et al. Effect of quench-tempering and laser quenching on the microstructure and properties of high-chromium cast iron [J]. J. Mater. Res. Technol., 2022, 19: 2759
doi: 10.1016/j.jmrt.2022.06.022
|
11 |
Zhang Y P, Zhan D P, Qi X W, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1240
doi: 10.1016/j.jmst.2019.01.009
|
12 |
Xu H W, Chen W W, Zhou K, et al. Temperature field computation for a rotating cylindrical workpiece under Laser quenching [J]. Int. J. Adv. Manuf. Technol., 2010, 47: 679
doi: 10.1007/s00170-009-2206-5
|
13 |
Li Z X, Tong B Q, Zhang Q L, et al. Microstructure refinement and properties of 1.0C-1.5Cr steel in a duplex treatment combining double quenching and laser surface quenching [J]. Mater. Sci. Eng., 2020, 776A: 138994
|
14 |
Pantelis D I, Bouyiouri E, Kouloumbi N, et al. Wear and corrosion resistance of laser surface hardened structural steel [J]. Surf. Coat. Technol., 2002, 161: 125
doi: 10.1016/S0257-8972(02)00495-4
|
15 |
Yang Z, Fan X F, Qiu C J, et al. Effect of laser power on quenched microstructure and friction and wear properties of 40CrNiMoA steel [J]. Heat Treat. Met., 2020, 45(3): 128
doi: 10.13251/j.issn.0254-6051.2020.03.025
|
15 |
杨 振, 樊湘芳, 邱长军 等. 激光功率对40CrNiMoA钢表面淬火组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(3): 128
|
16 |
Si Z W, Yuan N B, Fu H G. Effect of quenching and partitioning process on microstructure and properties of Mn-Si-Cr steel [J]. J. Mater. Eng. Perform., 2022, 31: 8655
doi: 10.1007/s11665-022-06871-9
|
17 |
Moradi M, Karami Moghadam M, Kazazi M. Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating [J]. Optik, 2019, 178: 614
doi: 10.1016/j.ijleo.2018.10.036
|
18 |
Ameri M H, Ghaini F M, Torkamany M J. Investigation into the efficiency of a fiber laser in surface hardening of ICD-5 tool steel [J]. Opt. Laser Technol., 2018, 107: 150
doi: 10.1016/j.optlastec.2018.05.030
|
19 |
Liu Y, Tian Y P, Zhang H, et al. Microstructure and properties of Cr12MoV die steel by laser quenching with different power [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 631: 022032
|
20 |
Wang J C, Du C Y, Wang Z, et al. Study on microstructure and properties of 32CrNi3MoVE steel by laser surface quenching [J]. Hot Work. Technol., 2023, 52(2): 62
|
20 |
王金川, 杜春燕, 王 震 等. 32CrNi3MoVE钢激光表面淬火显微组织和性能研究 [J]. 热加工工艺, 2023, 52(2): 62
|
21 |
Kong D C, Dong C F, Ni X Q, et al. Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment [J]. Corros. Sci., 2020, 166: 108425
doi: 10.1016/j.corsci.2019.108425
|
22 |
Telasang G, Dutta Majumdar J, Padmanabham G, et al. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel [J]. Surf. Coat. Technol., 2015, 261: 69
doi: 10.1016/j.surfcoat.2014.11.058
|
23 |
Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
|
23 |
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
doi: 10.11902/1005.4537.2019.272
|
24 |
Liu Z H, Gao Z M, Lv C T, et al. Research on the correlation between impact toughness and corrosion performance of Cr13 super martensitic stainless steel under deferent tempering condition [J]. Mater. Lett., 2021, 283: 128791
doi: 10.1016/j.matlet.2020.128791
|
25 |
Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
|
25 |
王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
|
26 |
Wei G Y, Lu S Y, Li S X, et al. Unmasking of the temperature window and mechanism for “loss of passivation” effect of a Cr-13 type martensite stainless steel [J]. Corros. Sci., 2020, 177: 108951
doi: 10.1016/j.corsci.2020.108951
|
27 |
Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
|
28 |
Liang J H, Gao H L, Xiang S B, et al. Research on tool wear morphology and mechanism during turning nickel-based alloy GH4169 with PVD-TiAlN coated carbide tool [J]. Wear, 2022, 508/509: 204468
|
29 |
Sharma S, Sangal S, Mondal K. On the optical microscopic method for the determination of ball-on-flat surface linearly reciprocating sliding wear volume [J]. Wear, 2013, 300: 82
doi: 10.1016/j.wear.2013.01.107
|
30 |
Nagai A, Tsutsumi Y, Suzuki Y, et al. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks’ solution [J]. Appl. Surf. Sci., 2012, 258: 5490
doi: 10.1016/j.apsusc.2012.02.057
|
31 |
Welsh N C. The dry wear of steels II. Interpretation and special features [J]. Philos. Trans. Roy. Soc., 1965, 257A: 51
|
32 |
Zhang F C, Lei T Q. A study of friction-induced martensitic transformation for austenitic manganese steel [J]. Wear, 1997, 212: 195
doi: 10.1016/S0043-1648(97)00156-7
|
33 |
Han B, Li M Y, Wang Y. Microstructure and wear resistance of laser clad Fe-Cr3C2 composite coating on 35CrMo steel [J]. J. Mater. Eng. Perform., 2013, 22: 3749
doi: 10.1007/s11665-013-0708-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|