Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 737-745     CSTR: 32134.14.1005.4537.2023.151      DOI: 10.11902/1005.4537.2023.151
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究
王长罡1, DANIEL Enobong Felix1, 李超1, 董俊华1(), 杨华2, 张东玖2()
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.西昌卫星发射中心 航天发射场可靠性技术重点实验室 海口 571126
Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments
WANG Changgang1, DANIEL Enobong Felix1, LI Chao1, DONG Junhua1(), YANG Hua2, ZHANG Dongjiu2()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Key Laboratory of Space Launching Site Reliability, Xichang Satellite Launch Center, Haikou 571126, China
全文: PDF(4183 KB)   HTML
摘要: 

通过对碳钢和不锈钢紧固件在海洋环境中的腐蚀特征、腐蚀产物和电偶极化等内容的比较性研究,提出了两种不同的腐蚀机制。对于碳钢紧固件,锈层增加了额外的IR降,削弱了阴极区对阳极缝隙区的极化作用,供氧的差异导致螺纹曝露部位的腐蚀更为严重,腐蚀形式以均匀腐蚀为主。对于不锈钢紧固件,缺氧的环境导致螺纹缝隙部位的钝化膜性能劣化,螺杆曝露区对螺纹缝隙区的电偶极化作用促使缝隙区腐蚀更为严重,腐蚀形式以点蚀为主。针对碳钢和不锈钢紧固件在海洋环境中的不同腐蚀机制,提出了差异化的腐蚀防护技术思路。

关键词 螺栓紧固件碳钢不锈钢电偶腐蚀缝隙腐蚀    
Abstract

Through a comparative study of the corrosion characteristics, corrosion products, and electrochemical polarization of carbon steel- and stainless steel-bolt fasteners in a Cl- containing NaCl solution, which aims to simulate offshore atmospheric environment. For carbon steel fasteners, the occurrence of rust scale can induce an extra IR drop, weakened the polarization effect of the cathodic area to the anodic crevice area, and the difference in oxygen supply led to more severe corrosion in the exposed thread area, mainly uniform corrosion. For stainless steel fasteners, the lack of oxygen in the environment led to the degradation of the passivation film performance in the thread crevice area, and the polarization effect of the exposed screw area to the thread crevice area, thus resulted in more severe corrosion in the crevice area, mainly pitting corrosion. Differentiated corrosion protection strategies were proposed for carbon steel and stainless steel fasteners in marine environments based on their distinct corrosion mechanisms.

Key wordsbolt fastener    carbon steel    stainless steel    galvanic corrosion    crevice corrosion
收稿日期: 2023-05-09      32134.14.1005.4537.2023.151
ZTFLH:  TG172  
基金资助:中国科学院青年创新促进会(2019193);中国科学院青年创新促进会(KGFZD-135-19-02)
通讯作者: 董俊华,E-mail: jhdong@imr.ac.cn,研究方向为耐蚀材料设计与腐蚀监检测;张东玖,E-mail: zhangdongjiu923@sohu.con,研究方向为金属腐蚀管理   
Corresponding author: DONG Junhua, E-mail: jhdong@imr.ac.cn;ZHANG Dongjiu, E-mail:zhangdongjiu923@sohu.con   
作者简介: 王长罡,男,1985年生,博士,研究员,2012 年毕业于中国科学院金属研究所,获博士学位。现就职于中国科学院金属研究 所,研究员,硕士生导师。王长罡博士长期致力于以现役的高通量腐蚀数据为基础,建立与实验室加速腐 蚀的关联性。从电子轨道理论角度理解材料属性与腐蚀环境关键因素之间的化学键合作用和配位吸附能 力的关系,从而揭示腐蚀机制,最终创建耐蚀材料设计新理论,建立腐蚀加速谱与寿命预测模型,制定腐蚀 标准、规范,服务于国民经济和国防建设。研究成果在文昌卫星发射基地塔架腐蚀监测与耐候钢选材、三 峡水电站转轮叶片点蚀行为与稀土夹杂物改性、高放射性核废物地质处置寿命预测与选材等领域得到了 应用。先后主持国家重点研发计划子课题、中科院重点部署课题、基础加强计划项目课题、中国科学院青 年创新促进会项目、国家自然科学基金等项目。发表SCI 论文30 余篇,授权专利6 项,起草团体标准1 项。入选中国科学院青 年创新促进会会员、中国腐蚀与防护学会装备健康智能诊断专委会委员、中国腐蚀与防护学报青年编委、沈阳市拔尖人才。获 得2022 年度中国腐蚀与防护学会科技进步一等奖 (自然科学类)。2023 年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 737-745.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.151      或      https://www.jcscp.org/CN/Y2023/V43/I4/737

图1  螺栓紧固件组件的示意图[19]
图2  C45碳钢螺栓紧固件在0.06 mol/L NaCl溶液中浸泡28 d前后的宏观形貌图[19]
图3  304不锈钢螺栓紧固件在腐蚀前后的表面形貌图 [20]
图4  C45碳钢紧固件曝露区域和接触区域表面锈层截面形貌以及Fe和O分布图[21]
图5  C45碳钢紧固件曝露区域和接触区域表面形成的腐蚀产物的XRD谱[21]
图6  304不锈钢紧固件在不同溅射时间下曝露区域表面和接触区域表面获得的XPS谱[20]
图7  304不锈钢紧固件表面钝化膜中不同元素含量随深度变化的XPS深度剖析图及对应的钝化膜模型[20]
图8  在曝露区域和接触区域电连接耦合的模式电偶电流密度随时间的变化[19]
图9  曝露区域和接触区域的电偶电流密度随时间的变化曲线和极化曲线[20]
图10  阴阳极区域面积比 (Sc/Sa) 对螺栓紧固件电偶电流密度的影响 [19]
图11  碳钢紧固件腐蚀进程与腐蚀机理示意图[21]
图12  304不锈钢紧固件的腐蚀进程与腐蚀机理示意图[20]
1 Hosoya N, Niikura T, Hashimura S, et al. Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis [J]. Measurement, 2020, 162: 107914
doi: 10.1016/j.measurement.2020.107914
2 Revie R W, Uhlig H H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering [M]. 4th ed. Hoboken: John Wiley & Sons Inc, 2008
3 Elshawesh F, Abusowa K, Mahfud H, et al. Stress-corrosion cracking and galvanic corrosion of internal bolts from a multistage water injection pump [J]. J. Fail. Anal. Prev., 2008, 8: 48
doi: 10.1007/s11668-007-9109-2
4 Hagarová M, Jakubéczyová D, Baranová G, et al. Determination of bimetallic corrosion risk using an electrochemical method [J]. Mater. Sci. Forum, 2019, 960: 62
doi: 10.4028/www.scientific.net/MSF.960
5 McCafferty E. Electrochemical behavior of iron within crevices in nearly neutral chloride solutions [J]. J. Electrochem. Soc., 1974, 121: 1007
doi: 10.1149/1.2401968
6 Al-sherrawi M H, Lyashenko V, Edaan E M, et al. Corrosion of metal construction structures [J]. Int. J. Civ. Eng. Technol., 2018, 9: 437
7 Meikle T, Tadolini S C, Sainsbury B A, et al. Laboratory and field testing of bolting systems subjected to highly corrosive environments [J]. Int. J. Min. Sci. Technol., 2017, 27: 101
doi: 10.1016/j.ijmst.2016.11.017
8 Radouani R, Echcharqy Y, Essahli M. Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint [J]. Int. J. Corros., 2017: 6174904
9 Rees E E, McPhail D S, Ryan M P, et al. Low energy SIMS characterisation of ultra thin oxides on ferrous alloys [J]. Appl. Surf. Sci., 2003, 203/204: 660
10 Niu L B, Okano K, Izumi S, et al. Effect of chloride and sulfate ions on crevice corrosion behavior of low-pressure steam turbine materials [J]. Corros. Sci., 2018, 132: 284
doi: 10.1016/j.corsci.2017.12.017
11 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
12 Udoh I I, Shi H W, Liu F C, et al. Synergistic effect of 3-amino-1,2,4-triazole-5-thiol and cerium chloride on corrosion inhibition of AA2024-T3 [J]. J. Electrochem. Soc., 2019, 166: C185
doi: 10.1149/2.0621906jes
13 Muzghi I A. Fastener corrosion in Arabian Gulf offshore installations [A]. EUROCORR 2004: Long Term Prediction and Modeling of Corrosion [C]. Nice, 2004: 1
14 Aziz N, Craig P, Nemcik J, et al. Rock bolt corrosion-an experimental study [J]. Min. Technol., 2014, 123: 69
doi: 10.1179/1743286314Y.0000000060
15 Yang X K, Zhang L W, Zhang S Y, et al. Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments [J]. Int. J. Electrochem. Sci., 2021, 16: 151015
doi: 10.20964/2021.01.68
16 Shah J K, Braga H B F, Mukherjee A, et al. Ultrasonic monitoring of corroding bolted joints [J]. Eng. Failure Anal., 2019, 102: 7
doi: 10.1016/j.engfailanal.2019.04.016
17 Gedge G. Structural uses of stainless steel-buildings and civil engineering [J]. J. Constr. Steel Res., 2008, 64: 1194
doi: 10.1016/j.jcsr.2008.05.006
18 Li X G, Zhang D W, Liu Z, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
19 Daniel E F, Dong J H, Li X F, et al. Corrosion behaviour of carbon steel fasteners in neutral chloride solution [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 563
doi: 10.1007/s40195-021-01284-4
20 Daniel E F, Wang C G, Li C, et al. Synergistic effect of crevice corrosion and galvanic coupling on 304SS fasteners degradation in chloride environments [J]. npj Mater. Degrad., 2023, 7: 11
doi: 10.1038/s41529-023-00327-8
21 Daniel E F, Li C, Wang C G, et al. Insights into the characteristics of corrosion products formed on the contact and exposed regions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments [J]. J. Mater. Sci. Technol., 2023, 135: 250
doi: 10.1016/j.jmst.2022.06.037
22 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
23 Veneranda M, Aramendia J, Bellot-Gurlet L, et al. FTIR spectroscopic semi-quantification of iron phases: a new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems [J]. Corros. Sci., 2018, 133: 68
doi: 10.1016/j.corsci.2018.01.016
24 Refait P, Grolleau A M, Jeannin M, et al. Corrosion of mild steel at the seawater/sediments interface: mechanisms and kinetics [J]. Corros. Sci., 2018, 130: 76
doi: 10.1016/j.corsci.2017.10.016
[1] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[2] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[3] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[4] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[5] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[6] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[7] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[8] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[9] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[10] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[11] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[12] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[13] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[14] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[15] 孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.