Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 587-593     CSTR: 32134.14.1005.4537.2022.141      DOI: 10.11902/1005.4537.2022.141
  研究报告 本期目录 | 过刊浏览 |
T92钢700 ℃下料浆渗铝机理研究
龚兵兵1, 刘光明1(), 安春香2, 梅林波2, 张帮彦1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.上海电气电站设备有限公司汽轮机厂 上海 201306
Growth Mechanism of Aluminide Coating on T92 Steel Prepared by Slurry Aluminizing at 700 ℃
GONG Bingbing1, LIU Guangming1(), AN Chunxiang2, MEI Linbo2, ZHANG Bangyan1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Shanghai Electric Power Plant Equipment Co. Ltd., Steam Turbine Plant, Shanghai 201306, China
全文: PDF(4411 KB)   HTML
摘要: 

采用料浆渗铝法在T92钢上开展了渗铝工艺研究,测试了700 ℃料浆层厚度约80 μm渗铝层生长动力学,采用XRD、SEM及EDS对渗铝层表面物相结构和渗铝层截面形貌、厚度和成分进行研究。结果表明:渗铝的前3 h活性Al原子 ([Al]) 向内扩散形成Fe2Al5 (η) 相;随后[Al]开始在料浆层与渗铝层界面堆积,此时,Fe以较快的速度向外扩散并形成Fe2Al5 (η) 和FeAl3 (θ) 混合相外层;10 h后在渗铝层内部可以清晰观察到FeAl (B2) 相层。从动力学和热力学角度探讨了渗铝层扩散及生长过程机理。[Al]向内扩散形成的η相层厚度随时间变化可用x=18.40t1/2-4.80表达。

关键词 T92钢料浆渗铝动力学热力学    
Abstract

The aluminizing process of T92 steel was conducted by slurry aluminizing method. The growth kinetics of the aluminized layer with a slurry layer thickness of about 80 μm at 700 ℃ was tested. The surface and cross-sectional morphology and composition of the aluminide coating were characterized by using SEM, EDS and XRD respectively. The results show that the active Al atoms ([Al]) diffused inward to form Fe2Al5 (η) phase in the first three hours of aluminizing. Then [Al] began to accumulate at the interface of the slurry/the formed aluminide coating, while Fe diffused outward rapidly resulted in the formation of the outer portion of the coating composed of mixed-phases Fe2Al5 (η) and FeAl3 (θ). After 10 h, the inner portion of FeAl (B2) phase could be clearly observed in the aluminized coatings. The mechanism of aluminized coating growth process and the relevant diffusion process of metallic components was discussed from the point of view of kinetics and thermodynamics. The thickness of the η-phase layer formed by the diffusion of [Al] with time can be expressed by equation of x=18.40t1/2-4.80.

Key wordsT92 steel    slurry aluminizing    kinetics    thermodynamics
收稿日期: 2022-06-15      32134.14.1005.4537.2022.141
ZTFLH:  TG174  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明,E-mail:gemliu@126.com,研究方向为材料腐蚀与防护
Corresponding author: LIU Guangming, E-mail: gemliu@126.com
作者简介: 龚兵兵,男,1996年生,硕士生

引用本文:

龚兵兵, 刘光明, 安春香, 梅林波, 张帮彦. T92钢700 ℃下料浆渗铝机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 587-593.
GONG Bingbing, LIU Guangming, AN Chunxiang, MEI Linbo, ZHANG Bangyan. Growth Mechanism of Aluminide Coating on T92 Steel Prepared by Slurry Aluminizing at 700 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 587-593.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.141      或      https://www.jcscp.org/CN/Y2023/V43/I3/587

图1  T92钢样品在700 ℃下1和4 h渗铝后的XRD谱
图2  T92钢在700 ℃下不同时间渗铝后的截面形貌及相应元素分布
AreaFeAlCrW
126.1470.323.070.47
210.2834.7650.134.83
322.8774.532.60-
442.4749.597.100.84
表1  图2中标记区域的元素成分分析结果
图3  η相层厚度 (x) 随时间变化曲线
图4  渗铝层中η相层厚度 (x) 随时间的平方根变化曲线
SubstanceΔH2980 / (J·mol-1)ΔS2980 / (J·K-1 mol-1)
Fe027.15
Al028.33
B2-48483.1450.74
η-201636.29153.61
θ-111368.8895.29
表2  渗铝层中各相的热力学数据[21]
ReactionT / KΔrH / (J·mol-1) (933-1298 K)
Fe+Al→B2298-933-48483.14-11.20(T-298)-0.0338(T 2-2982)
933-1298-58950.14-11.20(T-298)-0.0338(T 2-2982)
2Fe+5Al→η298-933-201636.29-109.17(T-298)-0.1152(T 2-2982)
933-1298-253971.29-109.17(T-298)-0.1152(T 2-2982)
Fe+3Al→θ298-933-111368.88-50.74(T-298)-0.0638(T 2-2982)
933-1298-142769.88-50.74(T-298)-0.0638(T 2-2982)
表3  Fe和Al反应摩尔相变焓与温度的关系式
ReactionT / KΔrS / (J·mol-1) (933-1298K)
Fe+Al→B2298-933-4.74-11.20lnT / 298-0.0338(T-298)
933-1298-4.74-11.20lnT / 298-0.0338(T-298)-10467 / T
2Fe+5Al→η298-933-42.34-109.17lnT / 298-0.1152(T-298)
933-1298-42.34-109.17lnT / 298-0.1152(T-298)-52335 / T
Fe+3Al→θ298-933-16.85-50.74lnT / 298-0.0638(T-298)
933-1298-16.85-50.74lnT / 298-0.0638(T-298)-31401 / Τ
表4  Fe和Al反应的摩尔熵变与温度的关系式
ReactionΔrG / (J·mol-1) (298-1298 K)
Fe+Al→B2-48483.14-21.2724(T-298)+4.74+11.20TlnT / 298
2Fe+5Al→η-201636.29-143.4996(T-298)+42.34+109.17TlnT / 298
Fe+3Al→θ-111368.88-69.7524(T-298)+16.85+50.74TlnT / 298
表5  Fe和Al反应的摩尔Gibbs自由能变化与温度的关系式
图5  不同Fe-Al化合反应的ΔrH相-T
图6  T92钢渗铝层的生长模型
1 Zhao Z L, Li S Z, Ma X, et al. Research status of main steam pipe candidate material characteristics and service performance for 700 ℃ ultra supercritical unit [J]. Therm. Power Gen., 2021, 50 (11): 1
1 赵子龙, 李生志, 马 翔 等. 700 ℃超超临界机组主蒸汽管道候选材料特性与服役性能研究现状 [J]. 热力发电, 2021, 50(11): 1
2 Agüero A, Muelas R, Pastor A, et al. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components [J]. Surf. Coat. Technol., 2005, 200: 1219
doi: 10.1016/j.surfcoat.2005.07.080
3 Balashadehi M M, Nourpour P, Aghdam A S R, et al. The formation, microstructure and hot corrosion behaviour of slurry aluminide coating modified by Ni/Ni-Co electrodeposited layer on Ni-base superalloy [J]. Surf. Coat. Technol., 2020, 402: 126283
doi: 10.1016/j.surfcoat.2020.126283
4 Warnes B M. Reactive element modified chemical vapor deposition low activity platinum aluminide coatings [J]. Surf. Coat. Technol., 2001, 146/147: 7
5 Zhu Y C, Liu G M, Dong M, et al. Dynamic behavior of low temperature aluminizing coating on T91 steel surface [J]. Trans. Mater. Heat Treat., 2018, 39(10): 93
5 朱阳存, 刘光明, 董 猛 等. T91钢表面低温渗层的动力学行为 [J]. 材料热处理学报, 2018, 39(10): 93
doi: 10.13289/j.issn.1009-6264.2018-0254
6 Agüero A, González V, Gutiérrez M, et al. Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92 [J]. Mater. Corros., 2011, 62: 561
7 Wang Z, Gao H X, Wang S Y. The influence of slurry aluminising on SCC of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 154
7 王 正, 高红霞, 王素英. 料浆渗铝对304不锈钢应力腐蚀开裂的影响 [J]. 中国腐蚀与防护学报, 1992, 12: 154
8 You X Q, Yu C L. Study on slurry aluminizing process with refractory clay protective case [J]. Hot Work. Technol., 1995, (1): 28
8 由向群, 于春兰. 用耐火粘土做保护层的料浆渗铝工艺研究 [J]. 热加工工艺, 1995, (1): 28
9 Dong M, Xie X Y, Zhu Y C, et al. Preparation of FeAl penetration layer on G115 and T92 steel surface and its oxidation resistance to high temperature steam [J]. Trans. Mater. Heat Treat., 2021, 42(5): 135
9 董 猛, 谢逍原, 朱阳存 等. G115和T92钢表面FeAl渗层制备及其抗高温水蒸汽氧化性能 [J]. 材料热处理学报, 2021, 42(5): 135
10 Agüero A, Gutiérrez M, Muelas R, et al. Overview of steam oxidation behaviour of Al protective oxide precursor coatings on P92 [J]. Surf. Eng., 2018, 34: 30
doi: 10.1080/02670844.2016.1155691
11 Li X L, Scherf A, Heilmaier M, et al. The Al-rich part of the Fe-Al phase diagram [J]. J. Phase Equilib. Diffus., 2016, 37: 162
doi: 10.1007/s11669-015-0446-7
12 Takemoto S, Nitta H, Iijima Y, et al. Diffusion of tungsten in α-iron [J]. Philos. Mag., 2007, 87: 1619
doi: 10.1080/14786430600732093
13 Zhang J X, Xu X Y, Qian C, et al. Experimental study on aluminizing of carbon steel surface by pack cementation [J]. Surf. Technol., 2018, 47(12): 68
13 张冀翔, 徐修炎, 钱 程 等. 碳钢表面粉末包埋法渗铝的实验研究 [J]. 表面技术, 2018, 47(12): 68
14 Wang X Q, Sui Y J, Lv H B. Fe and Al atoms diffusion in intermetallic formation [J]. J. Shanghai Univ. (Nat. Sci.), 1998, 4(6): 661
14 王兴庆, 隋永江, 吕海波. 铁铝原子在金属间化合物形成中的扩散 [J]. 上海大学学报 (自然科学版), 1998, 4(6): 661
15 Li N N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 Low Carbon steel by Pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35: 572
doi: 10.11901/1005.3093.2020.449
15 李宁宁, 陈 旸, 陈 希 等. 包埋渗铝法制备Fe-Al渗层及其扩散机制 [J]. 材料研究学报, 2021, 35: 572
doi: 10.11901/1005.3093.2020.449
16 Yao Y B, Xie T, Gao Y M. Handbook of Physical Chemistry [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1985: 143
16 姚允斌, 解 涛, 高英敏. 物理化学手册 [M]. 上海: 上海科学技术出版社, 1985: 143
17 Li N N. Preparation of Fe-Al intermetallic compound layer and its corrosion resistance to seawater [D]. Nanjing: Nanjing University of Science & Technology, 2017
17 李宁宁. Fe-Al金属间化合物渗层制备及耐海水腐蚀性能研究 [D]. 南京: 南京理工大学, 2017
18 Agüero A, Baráibar I, Gutiérrez M, et al. Steam oxidation of aluminide-coated and uncoated TP347HFG stainless steel under atmospheric and ultra-supercritical steam conditions at 700 ℃ [J]. Coatings, 2020, 10: 839
doi: 10.3390/coatings10090839
19 Zienert T, Amirkhanyan L, Seidel J, et al. Heat capacity of η-AlFe (Fe2Al5) [J]. Intermetallics, 2016, 77: 14
doi: 10.1016/j.intermet.2016.07.002
20 Zienert T, Leineweber A, Fabrichnaya O. Heat capacity of Fe-Al intermetallics: B2-FeAl, FeAl2, Fe2Al5 and Fe4Al13 [J]. J. Alloy. Compd., 2017, 725: 848
doi: 10.1016/j.jallcom.2017.07.199
21 Liu J B. Hot Dip Aluminizing of Steel [M]. Beijing: Metallurgical Industry Press, 1995: 21
21 刘津邦. 钢材的热浸镀铝 [M]. 北京: 冶金工业出版社, 1995: 21
22 Zhu Y C. Study on low temperature aluminizing process of 9Cr-3W-3Co steel and its resistance to steam oxidation [D]. Nanchang: Nanchang Hangkong University, 2019
22 朱阳存. 9Cr-3W-3Co钢低温渗铝工艺及其抗水蒸汽氧化性能研究 [D]. 南昌: 南昌航空大学, 2019
23 Lin S B, Song J L, Yang C L, et al. Microstructure analysis of interfacial layer with tungsten inert gas welding-brazing joint of aluminum alloy/stainless steel [J]. Acta Metall. Sin., 2009, 45: 1211
23 林三宝, 宋建岭, 杨春利 等. 铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析 [J]. 金属学报, 2009, 45: 1211
24 Xu G P, Wang K, Dong X P, et al. Experimental and theoretical research on the corrosion resistance of ferrous alloys in aluminum melts [J]. Metall. Mater. Trans., 2019, 50A: 4665
[1] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[2] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[3] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[4] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[5] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[6] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[7] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[8] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[9] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[10] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[11] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[12] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[14] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[15] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.