Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 288-294    DOI: 10.11902/1005.4537.2021.086
  研究报告 本期目录 | 过刊浏览 |
新型奥氏体不锈钢高温NaCl腐蚀行为研究
伊璞1, 侯利锋1, 杜华云1, 刘笑达1, 贾建文1, 李阳2, 张威2, 徐芳泓2, 卫英慧1()
1.太原理工大学材料科学与工程学院 太原 030024
2.太原钢铁 (集团) 有限公司 先进不锈钢材料国家重点实验室 太原 030003
NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature
YI Pu1, HOU Lifeng1, DU Huayun1, LIU Xiaoda1, JIA Jianwen1, LI Yang2, ZHANG Wei2, XU Fanghong2, WEI Yinghui1()
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd. , Taiyuan 030003, China
全文: PDF(15216 KB)   HTML
摘要: 

通过实验室模拟垃圾焚烧炉中水冷壁环境,研究了新型奥氏体不锈钢254SMo、904L和317L在750、850和950 ℃下NaCl盐中的热腐蚀行为,获得了腐蚀动力学曲线;利用SEM/EDS和XRD对3种材料腐蚀产物的形貌和组成进行了观察和分析,探讨了热腐蚀机理。结果表明:3种不锈钢在热腐蚀过程中都表现为失重,并且随着温度升高和时间延长失重增加,按耐蚀性排序为254SMo不锈钢>904L不锈钢>317L不锈钢;Mo的添加可以降低材料在氯盐中受到的侵蚀;在850和950 ℃下3种奥氏体不锈钢还发生了严重的晶间腐蚀。热腐蚀机理为“活性氧化”,生成的氯气会参与反应并持续循环。

关键词 奥氏体不锈钢热腐蚀腐蚀动力学氯化    
Abstract

Waste incinerators are faced with many high-temperature corrosion problems because they work at high temperatures all year round. The NaCl induced hot corrosion behavior of three novel austenitic stainless steels 254SMo, 904L and 317L in NaCl salt at 750, 850 and 950 ℃ was studied in order to simulate the corrosion emerged on the fire side of tubes in waste incinerator by means of corrosion kinetic measurement, SEM/EDS and XRD. The results show that the three austenitic stainless steels show mass loss during the hot corrosion process, their corrosion resistance may be ranked as follows: 254SMo stainless steel >904L stainless steel >317L stainless steel, whilst their mass loss increases with the increase of temperature and time. The addition of Mo can alleviate the corrosion of the steels in the chloride salt. Serious intergranular corrosion occurred in the three austenitic stainless steels at 850 and 950 ℃. The hot corrosion reaction follows the so called “active oxidation” mechanism, and the generated chlorine gas will participate in the reaction cycle.

Key wordsaustenitic stainless steel    hot corrosion    corrosion kinetics    chlorination
收稿日期: 2021-04-19     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52071227);山西省平台基地建设项目(2018D121003);中央引导地方科技发展专项;山西省科技重大专项(20191102006)
通讯作者: 卫英慧     E-mail: yhwei_tyut@126.com
Corresponding author: WEI Yinghui     E-mail: yhwei_tyut@126.com
作者简介: 伊璞,男,1995年生,硕士生

引用本文:

伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
Pu YI, Lifeng HOU, Huayun DU, Xiaoda LIU, Jianwen JIA, Yang LI, Wei ZHANG, Fanghong XU, Yinghui WEI. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 288-294.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.086      或      https://www.jcscp.org/CN/Y2022/V42/I2/288

SteelCSiMnPSCrNiMoCuNBFe
254SMo0.0100.430.400.0210.00119.9817.856.060.610.210.004Bal.
904L0.0110.451.280.0190.00120.0824.224.321.410.06---Bal.
317L0.0190.571.250.0240.00118.2913.323.150.050.050.004Bal.
表1  实验用3种奥氏体不锈钢的成分
图1  3种不锈钢在不同温度下的腐蚀动力学曲线
图2  3种不锈钢在不同温度下热腐蚀60 h后的质量损失
图3  3种不锈钢在不同温度下腐蚀60 h前后的XRD图
图4  3种不锈钢在不同温度下热腐蚀后的表面SEM图
图5  3种不锈钢在850 ℃下NaCl中高温腐蚀后的SEM图以及对应的EDS分析结果
图6  3种不锈钢在不同温度下腐蚀60 h后的截面形貌
1 Makarichi L, Jutidamrongphan W, Techato K A. The evolution of waste-to-energy incineration: A review [J]. Renew. Sust. Energy Rev., 2018, 91: 812
2 Fu L Q. Causes and preventive measures of boiler heating surface corrosion in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
2 傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9
3 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
3 蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
4 Morales M, Chimenos J M, Fernández A I, et al. Materials selection for superheater tubes in municipal solid waste incineration plants [J]. J. Mater. Eng. Perform., 2014, 23: 3207
5 Phongphiphat A, Ryu C, Finney K N, et al. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant [J]. J. Hazard. Mater., 2011, 186: 218
6 Larsson E, Liske J, Persdotter A, et al. The influence of KCl and HCl on the high-temperature oxidation of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Oxid. Met., 2020, 93: 29
7 Hodge F G. The history of solid-solution-strengthened Ni alloys for aqueous corrosion service [J]. JOM, 2006, 58: 28
8 Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 222
9 Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 234
10 Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
11 Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
12 Song Z G, Pu E X. Precipitated phases of superaustenitic stainless steel 654SMO [J]. J. Iron Steel Res. Int., 2017, 24: 743
13 Olsson J, Wasielewska W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments [J]. Mater. Corros., 1997, 48: 791
14 Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
15 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
16 Yang B, Zhong Z Q, Huang Q X, et al. Research development of high temperature chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
16 杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5
17 Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400~700 ℃ [J]. Corros. Sci., 2000, 42: 1093
18 Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
19 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
20 Mendiratta M G, Parthasarathy T A, Dimiduk D M. Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system [J]. Intermetallics, 2002, 10: 225
21 Li H B, Zhang B B, Jiang Z H, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air [J]. J. Alloy. Compd., 2016, 686: 326
22 Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
23 Galetz M C, Rammer B, Schütze M. Refractory metals and nickel in high temperature chlorine‐containing environments‐thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a review [J]. Mater. Corros., 2015, 66: 1206
24 Chen L Y, Lan H, Huang C B, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750 ℃ [J]. Eng. Fail. Anal., 2017, 79: 245
[1] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[2] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[3] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[4] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[5] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[6] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[7] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[10] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[11] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[12] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[13] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[14] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[15] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.