|
|
新型奥氏体不锈钢高温NaCl腐蚀行为研究 |
伊璞1, 侯利锋1, 杜华云1, 刘笑达1, 贾建文1, 李阳2, 张威2, 徐芳泓2, 卫英慧1( ) |
1.太原理工大学材料科学与工程学院 太原 030024 2.太原钢铁 (集团) 有限公司 先进不锈钢材料国家重点实验室 太原 030003 |
|
NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature |
YI Pu1, HOU Lifeng1, DU Huayun1, LIU Xiaoda1, JIA Jianwen1, LI Yang2, ZHANG Wei2, XU Fanghong2, WEI Yinghui1( ) |
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd. , Taiyuan 030003, China |
引用本文:
伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
Pu YI,
Lifeng HOU,
Huayun DU,
Xiaoda LIU,
Jianwen JIA,
Yang LI,
Wei ZHANG,
Fanghong XU,
Yinghui WEI.
NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 288-294.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.086
或
https://www.jcscp.org/CN/Y2022/V42/I2/288
|
1 |
Makarichi L, Jutidamrongphan W, Techato K A. The evolution of waste-to-energy incineration: A review [J]. Renew. Sust. Energy Rev., 2018, 91: 812
|
2 |
Fu L Q. Causes and preventive measures of boiler heating surface corrosion in domestic waste incineration plant [J]. Metall. Collect., 2017, (5): 9
|
2 |
傅玲琼. 生活垃圾焚烧厂锅炉受热面腐蚀原因及预防措施 [J]. 工程技术研究, 2017, (5): 9
|
3 |
Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
|
3 |
蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
|
4 |
Morales M, Chimenos J M, Fernández A I, et al. Materials selection for superheater tubes in municipal solid waste incineration plants [J]. J. Mater. Eng. Perform., 2014, 23: 3207
|
5 |
Phongphiphat A, Ryu C, Finney K N, et al. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant [J]. J. Hazard. Mater., 2011, 186: 218
|
6 |
Larsson E, Liske J, Persdotter A, et al. The influence of KCl and HCl on the high-temperature oxidation of a Fe-2.25Cr-1Mo steel at 400 ℃ [J]. Oxid. Met., 2020, 93: 29
|
7 |
Hodge F G. The history of solid-solution-strengthened Ni alloys for aqueous corrosion service [J]. JOM, 2006, 58: 28
|
8 |
Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 222
|
9 |
Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions [J]. Sol. Energy Mater. Sol. Cells, 2017, 166: 234
|
10 |
Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
|
11 |
Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
|
12 |
Song Z G, Pu E X. Precipitated phases of superaustenitic stainless steel 654SMO [J]. J. Iron Steel Res. Int., 2017, 24: 743
|
13 |
Olsson J, Wasielewska W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments [J]. Mater. Corros., 1997, 48: 791
|
14 |
Indacochea J E, Smith J L, Litko K R, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides [J]. Oxid. Met., 2001, 55: 1
|
15 |
Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
|
16 |
Yang B, Zhong Z Q, Huang Q X, et al. Research development of high temperature chlorine corrosion in waste incineration boilers [J]. Guangdong Electr. Power, 2016, 29(6): 5
|
16 |
杨波, 钟志强, 黄巧贤等. 垃圾焚烧锅炉的高温氯腐蚀研究进展 [J]. 广东电力, 2016, 29(6): 5
|
17 |
Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400~700 ℃ [J]. Corros. Sci., 2000, 42: 1093
|
18 |
Li Y S, Spiegel M, Shimada S. Corrosion behaviour of various model alloys with NaCl-KCl coating [J]. Mater. Chem. Phys., 2005, 93: 217
|
19 |
Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
|
20 |
Mendiratta M G, Parthasarathy T A, Dimiduk D M. Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system [J]. Intermetallics, 2002, 10: 225
|
21 |
Li H B, Zhang B B, Jiang Z H, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air [J]. J. Alloy. Compd., 2016, 686: 326
|
22 |
Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment-solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
|
23 |
Galetz M C, Rammer B, Schütze M. Refractory metals and nickel in high temperature chlorine‐containing environments‐thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a review [J]. Mater. Corros., 2015, 66: 1206
|
24 |
Chen L Y, Lan H, Huang C B, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750 ℃ [J]. Eng. Fail. Anal., 2017, 79: 245
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|