|
|
三价铬基转化膜生长动力学研究现状及进展 |
王来滨, 刘侠和( ), 王梅, 高俊杰 |
东北大学冶金学院资源与环境系 资源与环境工程研究所 沈阳 110819 |
|
Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film |
WANG Laibin, LIU Xiahe( ), WANG Mei, GAO Junjie |
Department of Resource and Environment, Institute of Metallurgical Resources and Environmental Engineering, School of Metallurgy, Northeastern University, Shenyang 110819, China |
引用本文:
王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
Laibin WANG,
Xiahe LIU,
Mei WANG,
Junjie GAO.
Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 571-578.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.240
或
https://www.jcscp.org/CN/Y2021/V41/I5/571
|
1 |
Mekhalif Z, Forget L, Delhalle J. Investigation of the protective action of chromate coatings on hot-dip galvanized steel: Role of wetting agents [J]. Corros. Sci., 2005, 47: 547
|
2 |
Lugauskas A, Demčenko I, Selskienė A, et al. Resistance of chromated zinc coatings to the impact of microscopic fungi [J]. Mater. Sci., 2011, 17: 20
|
3 |
Jeffcoate C S, Isaacs H S, Aldykiewicz A J, et al. Chromate in conversion coatings: A XANES study of its concentration and mobility [J]. J. Electrochem. Soc., 2000, 147: 540
|
4 |
Wilcox G D. Replacing chromates for the passivation of zinc surfaces [J]. Trans. IMF, 2003, 81: B13
|
5 |
Saillard R, Viguier B, Odemer G, et al. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer [J]. Corros. Sci., 2018, 142: 119
|
6 |
Gao Z Q, Zhang D W, Liu Z Y, et al. Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: A review [J]. J. Coat. Technol. Res., 2019, 16: 1
|
7 |
Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
|
8 |
Li L L, Doran K P, Swain G M. Electrochemical characterization of trivalent chromium process (TCP) coatings on aluminum alloys 6061 and 7075 [J]. J. Electrochem. Soc., 2013, 160: C396
|
9 |
Puomi P, Fagerholm H M, Rosenholm J B, et al. Comparison of different commercial pretreatment methods for hot-dip galvanized and Galfan coated steel [J]. Surf. Coat. Technol., 1999, 115: 70
|
10 |
Cho K W, Rao V S, Kwon H S. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc [J]. Electrochim. Acta, 2007, 52: 4449
|
11 |
Sheu H H, Lee H B, Jian S Y, et al. Investigation on the corrosion resistance of trivalent chromium conversion passivate on electroplated Zn-Ni alloy [J]. Surf. Coat. Technol., 2016, 305: 241
|
12 |
Chen W K, Bai C Y, Liu C M, et al. The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys [J]. Appl. Surf. Sci., 2010, 256: 4924
|
13 |
Chen W K, Lee J L, Bai C Y, et al. Growth and characteristics of Cr(III)-based conversion coating on aluminum alloy [J]. J. Taiwan Inst. Chem. Eng., 2012, 43: 989
|
14 |
Kaesche H. The passivity of zinc in aqueous solutions of sodium carbonate and sodium bicarbonate [J]. Electrochim. Acta, 1964, 9: 383
|
15 |
Dardona S, Chen L, Kryzman M, et al. Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum [J]. Anal. Chem., 2011, 83: 6127
|
16 |
Campestrini P, van Westing E P M, Hovestad A, et al. Investigation of the chromate conversion coating on Alclad 2024 aluminium alloy: effect of the pH of the chromate bath [J]. Electrochim. Acta, 2002, 47: 1097
|
17 |
Qi J T, Hashimoto T, Walton J R, et al. Trivalent chromium conversion coating formation on aluminium [J]. Surf. Coat. Technol., 2015, 280: 317
|
18 |
Verdalet-Guardiola X, Fori B, Bonino J P, et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy [J]. Corros. Sci., 2019, 155: 109
|
19 |
Verdalet-Guardiola X, Bonino J P, Duluard S, et al. Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy [J]. Surf. Coat. Technol., 2018, 344: 276
|
20 |
Cerezo J, Vandendael I, Posner R, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces [J]. Surf. Coat. Technol., 2013, 236: 284
|
21 |
Li L L, Swain G P, Howell A, et al. The formation, structure, electrochemical properties and stability of trivalent chrome process (TCP) coatings on AA2024 [J]. J. Electrochem. Soc., 2011, 158: C247
|
22 |
Qi J T, Hashimoto T, Walton J, et al. Formation of a trivalent chromium conversion coating on AA2024-T351 alloy [J]. J. Electrochem. Soc., 2016, 163: C25
|
23 |
Chang Y T, Wen N T, Chen W K, et al. The effects of immersion time on morphology and electrochemical properties of the Cr(III)-based conversion coatings on zinc coated steel surface [J]. Corros. Sci., 2008, 50: 3494
|
24 |
Yan H, Zhao Q, Du N, et al. Formation process and corrosion resistance of trivalent chromium passivation film on Zn-plated Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 547
|
24 |
严寒, 赵晴, 杜楠等. 镀锌层三价铬钝化成膜过程及耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 547
|
25 |
Wen N T, Lin C S, Bai C Y, et al. Structures and characteristics of Cr(III)-based conversion coatings on electrogalvanized steels [J]. Surf. Coat. Technol., 2008, 203: 317
|
26 |
Liu X H, Wang M, Li H X, et al. Electrochemical effects of pH value on the corrosion inhibition and microstructure of cerium doped trivalent chromium conversion coating on Zn [J]. Corros. Sci., 2020, 167: 108538
|
27 |
Schram T, Goeminne G, Terryn H, et al. Study of the composition of zirconium based chromium free conversion layers on aluminium [J]. Trans. Inst. Met. Finish., 1995, 73: 91
|
28 |
Yu H C, Chen B Z, Shi X C, et al. EIS investigation of the deposition of trivalent chromium coatings on Al 6063 alloy [J]. J. Appl. Electrochem., 2009, 39: 303
|
29 |
Castle J E, Qiu J H. The application of ICP-MS and XPS to studies of ion selectivity during passivation of stainless steels [J]. J. Electrochem. Soc., 1990, 137: 2031
|
30 |
Lavigne O, Alemany-Dumont C, Normand B, et al. Cerium insertion in 316L passive film: Effect on conductivity and corrosion resistance performances of metallic bipolar plates for PEM fuel cell application [J]. Surf. Coat. Technol., 2010, 205: 1870
|
31 |
Sidane D, Touzet M, Devos O, et al. Investigation of the surface reactivity on a 304L tensile notched specimen using scanning electrochemical microscopy [J]. Corros. Sci., 2014, 87: 312
|
32 |
Paik C H, White H S, Alkire R C. Scanning electrochemical microscopy detection of dissolved sulfur species from inclusions in stainless steel [J]. J. Electrochem. Soc., 2000, 147: 4120
|
33 |
Gigandet M P, Faucheu J, Tachez M. Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: role of the main constituents [J]. Surf. Coat. Technol., 1997, 89: 285
|
34 |
Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
|
35 |
Kawaguchi H, Funatsumaru O, Sugawara H, et al. Development of trivalent chromium passivation for Zn platng with high corrosion resistance after heating [J]. SAE Int. J. Mater. Manuf., 2016, 9: 833
|
36 |
Hesamedini S, Ecke G, Bund A. Structure and formation of trivalent chromium conversion coatings containing cobalt on zinc plated steel [J]. J. Electrochem. Soc., 2018, 165: C657
|
37 |
Wen N T, Chen F J, Ger M D, et al. Microstructure of trivalent chromium conversion coating on electrogalvanized steel plate [J]. Electrochem. Solid-State Lett., 2008, 11: C47
|
38 |
Gojic M, Marijan D, Kosec L. Electrochemical behavior of duplex stainless steel in borate buffer solution [J]. Corrosion, 2000, 56: 839
|
39 |
Niu Y K, Zhang S S, Cheng Q, et al. Characterization and corrosion resistance study of the Fe-Cr films electrodeposited from trivalent chromium sulfate electrolyte [J]. Mater. Res. Express, 2020, 6: 126
|
40 |
Guo X F, Wang Y, Sun H, et al. Preparation and corrosion resistance of trivalent chromium passivation coating on galvanized steel [J]. J. Mater. Prot., 2012, 45(2): 35
|
40 |
郭晓斐, 王玥, 孙华等. 镀锌层三价铬钝化膜的制备工艺及性能研究 [J]. 材料保护, 2012, 45(2): 35
|
41 |
Survilienė S, Češūnienė A, Juškėnas R, et al. The use of trivalent chromium bath to obtain a solar selective black chromium coating [J]. Appl. Surf. Sci., 2014, 305: 492
|
42 |
Munson C A, Swain G M. Structure and chemical composition of different variants of a commercial trivalent chromium process (TCP) coating on aluminum alloy 7075-T6 [J]. Surf. Coat. Technol., 2017, 315: 150
|
43 |
García-Antón J, Fernández-Domene R M, Sánchez-Tovar R, et al. Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths [J]. Chem. Eng. Sci., 2014, 111: 402
|
44 |
Qi J, Zhang B, Wang Z, et al. Effect of an Fe(II)-modified trivalent chromium conversion process on Cr(VI) formation during coating of AA 2024 alloy [J]. Electrochem. Commun., 2018, 92: 1
|
45 |
Qi J T, Gao L, Liu Y, et al. Chromate formed in a trivalent chromium conversion coating on aluminum [J]. J. Electrochem. Soc., 2017, 164: C442
|
46 |
Hesamedini S, Bund A. Formation of Cr(VI) in cobalt containing Cr(III)-based treatment solution [J]. Surf. Coat. Technol., 2018, 334: 444
|
47 |
Lu J, Wu Y Z, Ma C. X-ray photoelectron spectroscopic studies on passivation films on zinc plating coatings formed by trivalent chromium passivating agents [J]. Electroplat. Finish., 2009, 28(4): 26
|
47 |
卢进, 吴育忠, 马冲. 镀锌三价铬钝化膜的X射线光电子能谱研究 [J]. 电镀与涂饰, 2009, 28(4): 26
|
48 |
Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
|
49 |
Ely M, Światowska J, Seyeux A, et al. Role of post-treatment in improved corrosion behavior of trivalent chromium protection (TCP) coating deposited on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2017, 164: C276
|
50 |
Wang L T, Seyeux A, Marcus P. Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS [J]. Corros. Sci., 2020, 165: 108395
|
51 |
Laget V, Jeffcoate C S, Isaacs H S, et al. Dehydration-induced loss of corrosion protection properties in chromate conversion coatings on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2003, 150: B425
|
52 |
Yu Z Z, Ni H B, Zhang G S, et al. A study of the composition and structure of chromate conversion coating on aluminum [J]. Appl. Surf. Sci., 1992, 62: 217
|
53 |
Marcus P, Protopopoff E. Potential-pH diagrams for adsorbed species, application to sulfur adsorbed on iron in water at 25 ℃ and 300 ℃ [J]. J. Electrochem. Soc., 1990, 137: 2709
|
54 |
Liu X H, Wu X Q, Han E-H. Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 65: 136
|
55 |
Cabrera N, Mott N F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
|
56 |
Davenport A J, Burstein G T. Concerning the distribution of the overpotential during anodic oxide film growth [J]. J. Electrochem. Soc., 1990, 137: 1496
|
57 |
Burstein G T. The current-time relationship during anodic oxide film growth under high electric field [J]. J. Electrochem. Soc., 1989, 136: 936
|
58 |
Fehlner F P. Low temperature oxidation of metals and semiconductors [J]. J. Electrochem. Soc., 1984, 131: 1645
|
59 |
Fehlner F P, Mott N F. Low-temperature oxidation [J]. Oxid. Met., 1970, 2: 59
|
60 |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
|
61 |
MacDonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
|
62 |
MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
|
63 |
Leistner K, Toulemonde C, Diawara B, et al. Oxide film growth kinetics on metals and alloys: II. Numerical simulation of transient behavior [J]. J. Electrochem. Soc., 2013, 160: C197
|
64 |
Goswani K N, Staehle R W. Growth kinetics of passive films on Fe, Fe-Ni, Fe-Cr, Fe-Cr-Ni alloys [J]. Electrochim. Acta, 1971, 16: 1895
|
65 |
Bhavani K, Vaidyan V K. Oxidation of iron and influence of an electric field at room temperature [J]. Oxid. Met., 1981, 15: 137
|
66 |
Fujii H, Wakabayashi Y, Doi T. Early stages of iron anodic oxidation: Defective growth and density increase of oxide layer [J]. Phys. Rev. Mater., 2020, 4: 033401
|
67 |
Fujii H, Wakabayashi Y, Doi T. Kinetics of iron passivation studied by sub-second resolution realtime X-ray reflectivity technique [J]. J. Electrochem. Soc., 2019, 166: E212
|
68 |
MacDonald D D. Some personal adventures in passivity—A review of the point defect model for film growth [J]. Russ. J. Electrochem., 2012, 48: 235
|
69 |
MacDonald D D. On the existence of our metals-based civilization I. Phase-space analysis [J]. J. Electrochem. Soc., 2006, 153: B213
|
70 |
Kim D H, Kim S S, Lee H H, et al. Oxidation kinetics in iron and stainless steel: an in situ X-ray reflectivity study [J]. J. Phys. Chem., 2004, 108B: 20213
|
71 |
Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM) [J]. Corros. Sci., 2011, 53: 3186
|
72 |
Lv J L, Yang M, Miura H, et al. The effect of surface enriched chromium and grain refinement by ball milling on corrosion resistance of 316L stainless steel [J]. Mater. Res. Bull., 2017, 91: 91
|
73 |
Kamrunnahar M, Bao J E, MacDonald D D. Challenges in the theory of electron transfer at passive interfaces [J]. Corros. Sci., 2005, 47: 3111
|
74 |
Zhang Y C, MacDonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
|
74 |
资助项目 国家自然科学基金 (51701038) 和中央高校基本科研业务费专项 (N162503002)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|