Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 571-578    DOI: 10.11902/1005.4537.2020.240
  综合评述 本期目录 | 过刊浏览 |
三价铬基转化膜生长动力学研究现状及进展
王来滨, 刘侠和(), 王梅, 高俊杰
东北大学冶金学院资源与环境系 资源与环境工程研究所 沈阳 110819
Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film
WANG Laibin, LIU Xiahe(), WANG Mei, GAO Junjie
Department of Resource and Environment, Institute of Metallurgical Resources and Environmental Engineering, School of Metallurgy, Northeastern University, Shenyang 110819, China
全文: PDF(1109 KB)   HTML
摘要: 

金属或合金表面三价铬基转化 (TCC) 膜毒性低,但稳定性较差且容易开裂。如何形成高品质的TCC膜,已成为提高材料耐蚀及稳定性的关键问题。本文通过调研国内外有关TCC膜研究现状,综述了TCC膜的生长过程、电化学特性、微观结构及物相等性能变化。结合氧化物热力学理论及膜层生长动力学模型,分析了TCC膜稳定性及发展机理,总结了目前TCC膜层生长研究中存在的问题,并对其未来发展趋势进行了展望。

关键词 三价铬氧化膜动力学电化学微观结构    
Abstract

The trivalent Cr-based conversion (TCC) film on metal and alloy has low toxicity, but unexpectedly poor stability and easy to crack. How to form a high-quality TCC film becomes the key issue for acquiring such films with comprehensive performance both in good corrosion resistance and stability. By investigating the relevant worldwide research of TCC film growth, the corresponding properties, like electrochemical performance, microstructure, phase constituents etc. of the film are reviewed. Taking the thermodynamic theory of oxides system and the kinetic model of film growth into consideration, the stability and growth mechanism of TCC film are analyzed, the existing problems and future developments for the growth of TCC film are proposed.

Key wordstrivalent chromium    oxide film    kinetics    electrochemistry    microstructure
收稿日期: 2020-11-18     
ZTFLH:  TG172  
通讯作者: 刘侠和     E-mail: liuxiahe@smm.neu.edu.cn
Corresponding author: LIU Xiahe     E-mail: liuxiahe@smm.neu.edu.cn
作者简介: 王来滨,男,1994年生,硕士生

引用本文:

王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
Laibin WANG, Xiahe LIU, Mei WANG, Junjie GAO. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 571-578.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.240      或      https://www.jcscp.org/CN/Y2021/V41/I5/571

StageEnvironmentOxide layers on baseRegularity of corrosion potentialReferences
Two stagespH1.2~4 SurTec 650 solution, <600 sCr(III)-based film on Al or Al alloyPotential decreases first and then tend to stabilize[15,16]
Three stagespH 2.0-4.0 Socosurf TCS solution, <1200 sCr(III)-based film on Al or ZnThe potential first decreases, then increases, and finally stabilizes[17-22]
Four stagespH2.0 Cr(NO3)3 base solution, <1200 sCr(III)-based film on ZnThe potential first decreases, increases, then decreases and finally stabilizes[23,24]
表1  TCC膜生长过程OCP随浸泡时间的演变规律[15-24]
Model

CMM[55-57]

(air phase formation)

FMM[58,59]

(air phase formation)

PDM[60-62]

(electrochemical formation)

Oxide growth mechanismMigration of interstitial cationsMigration of interstitial anionsMigration of anion vacancies
Growth law

Weak Electric Field: L2=εLt

Strong electric field:

1/L=A-Blnt1/L

Activation energy function of thickness L=Cln(1+Dt)Transport controlled:L=(1/2K)[ln2Ka(b-1)+lnt] Interface controlled:L=Lt=0+(1/b)ln[1+abtexp(-bLt=0)]
Electric FieldεL=V/LIndependent of LIndependent of L
Limiting Growth Step

Weak electric field:

Transport of cations through the film Strong electric field:

Cation injection at m/f interface

Anion transport through the film

Transport controlled:

Oxygen vacancies through film

Interface controlled:

Anion vacancy injection at m/f interface

Dissolutionn/an/aDissolution of metal dissolution of oxide
Interfacial potential dropn/an/aFunction of pH and Vext
表2  钝化膜生长模型的主要特点总结[55-62]
1 Mekhalif Z, Forget L, Delhalle J. Investigation of the protective action of chromate coatings on hot-dip galvanized steel: Role of wetting agents [J]. Corros. Sci., 2005, 47: 547
2 Lugauskas A, Demčenko I, Selskienė A, et al. Resistance of chromated zinc coatings to the impact of microscopic fungi [J]. Mater. Sci., 2011, 17: 20
3 Jeffcoate C S, Isaacs H S, Aldykiewicz A J, et al. Chromate in conversion coatings: A XANES study of its concentration and mobility [J]. J. Electrochem. Soc., 2000, 147: 540
4 Wilcox G D. Replacing chromates for the passivation of zinc surfaces [J]. Trans. IMF, 2003, 81: B13
5 Saillard R, Viguier B, Odemer G, et al. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer [J]. Corros. Sci., 2018, 142: 119
6 Gao Z Q, Zhang D W, Liu Z Y, et al. Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: A review [J]. J. Coat. Technol. Res., 2019, 16: 1
7 Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316 L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
8 Li L L, Doran K P, Swain G M. Electrochemical characterization of trivalent chromium process (TCP) coatings on aluminum alloys 6061 and 7075 [J]. J. Electrochem. Soc., 2013, 160: C396
9 Puomi P, Fagerholm H M, Rosenholm J B, et al. Comparison of different commercial pretreatment methods for hot-dip galvanized and Galfan coated steel [J]. Surf. Coat. Technol., 1999, 115: 70
10 Cho K W, Rao V S, Kwon H S. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc [J]. Electrochim. Acta, 2007, 52: 4449
11 Sheu H H, Lee H B, Jian S Y, et al. Investigation on the corrosion resistance of trivalent chromium conversion passivate on electroplated Zn-Ni alloy [J]. Surf. Coat. Technol., 2016, 305: 241
12 Chen W K, Bai C Y, Liu C M, et al. The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys [J]. Appl. Surf. Sci., 2010, 256: 4924
13 Chen W K, Lee J L, Bai C Y, et al. Growth and characteristics of Cr(III)-based conversion coating on aluminum alloy [J]. J. Taiwan Inst. Chem. Eng., 2012, 43: 989
14 Kaesche H. The passivity of zinc in aqueous solutions of sodium carbonate and sodium bicarbonate [J]. Electrochim. Acta, 1964, 9: 383
15 Dardona S, Chen L, Kryzman M, et al. Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum [J]. Anal. Chem., 2011, 83: 6127
16 Campestrini P, van Westing E P M, Hovestad A, et al. Investigation of the chromate conversion coating on Alclad 2024 aluminium alloy: effect of the pH of the chromate bath [J]. Electrochim. Acta, 2002, 47: 1097
17 Qi J T, Hashimoto T, Walton J R, et al. Trivalent chromium conversion coating formation on aluminium [J]. Surf. Coat. Technol., 2015, 280: 317
18 Verdalet-Guardiola X, Fori B, Bonino J P, et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy [J]. Corros. Sci., 2019, 155: 109
19 Verdalet-Guardiola X, Bonino J P, Duluard S, et al. Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy [J]. Surf. Coat. Technol., 2018, 344: 276
20 Cerezo J, Vandendael I, Posner R, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces [J]. Surf. Coat. Technol., 2013, 236: 284
21 Li L L, Swain G P, Howell A, et al. The formation, structure, electrochemical properties and stability of trivalent chrome process (TCP) coatings on AA2024 [J]. J. Electrochem. Soc., 2011, 158: C247
22 Qi J T, Hashimoto T, Walton J, et al. Formation of a trivalent chromium conversion coating on AA2024-T351 alloy [J]. J. Electrochem. Soc., 2016, 163: C25
23 Chang Y T, Wen N T, Chen W K, et al. The effects of immersion time on morphology and electrochemical properties of the Cr(III)-based conversion coatings on zinc coated steel surface [J]. Corros. Sci., 2008, 50: 3494
24 Yan H, Zhao Q, Du N, et al. Formation process and corrosion resistance of trivalent chromium passivation film on Zn-plated Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 547
24 严寒, 赵晴, 杜楠等. 镀锌层三价铬钝化成膜过程及耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 547
25 Wen N T, Lin C S, Bai C Y, et al. Structures and characteristics of Cr(III)-based conversion coatings on electrogalvanized steels [J]. Surf. Coat. Technol., 2008, 203: 317
26 Liu X H, Wang M, Li H X, et al. Electrochemical effects of pH value on the corrosion inhibition and microstructure of cerium doped trivalent chromium conversion coating on Zn [J]. Corros. Sci., 2020, 167: 108538
27 Schram T, Goeminne G, Terryn H, et al. Study of the composition of zirconium based chromium free conversion layers on aluminium [J]. Trans. Inst. Met. Finish., 1995, 73: 91
28 Yu H C, Chen B Z, Shi X C, et al. EIS investigation of the deposition of trivalent chromium coatings on Al 6063 alloy [J]. J. Appl. Electrochem., 2009, 39: 303
29 Castle J E, Qiu J H. The application of ICP-MS and XPS to studies of ion selectivity during passivation of stainless steels [J]. J. Electrochem. Soc., 1990, 137: 2031
30 Lavigne O, Alemany-Dumont C, Normand B, et al. Cerium insertion in 316L passive film: Effect on conductivity and corrosion resistance performances of metallic bipolar plates for PEM fuel cell application [J]. Surf. Coat. Technol., 2010, 205: 1870
31 Sidane D, Touzet M, Devos O, et al. Investigation of the surface reactivity on a 304L tensile notched specimen using scanning electrochemical microscopy [J]. Corros. Sci., 2014, 87: 312
32 Paik C H, White H S, Alkire R C. Scanning electrochemical microscopy detection of dissolved sulfur species from inclusions in stainless steel [J]. J. Electrochem. Soc., 2000, 147: 4120
33 Gigandet M P, Faucheu J, Tachez M. Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: role of the main constituents [J]. Surf. Coat. Technol., 1997, 89: 285
34 Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
35 Kawaguchi H, Funatsumaru O, Sugawara H, et al. Development of trivalent chromium passivation for Zn platng with high corrosion resistance after heating [J]. SAE Int. J. Mater. Manuf., 2016, 9: 833
36 Hesamedini S, Ecke G, Bund A. Structure and formation of trivalent chromium conversion coatings containing cobalt on zinc plated steel [J]. J. Electrochem. Soc., 2018, 165: C657
37 Wen N T, Chen F J, Ger M D, et al. Microstructure of trivalent chromium conversion coating on electrogalvanized steel plate [J]. Electrochem. Solid-State Lett., 2008, 11: C47
38 Gojic M, Marijan D, Kosec L. Electrochemical behavior of duplex stainless steel in borate buffer solution [J]. Corrosion, 2000, 56: 839
39 Niu Y K, Zhang S S, Cheng Q, et al. Characterization and corrosion resistance study of the Fe-Cr films electrodeposited from trivalent chromium sulfate electrolyte [J]. Mater. Res. Express, 2020, 6: 126
40 Guo X F, Wang Y, Sun H, et al. Preparation and corrosion resistance of trivalent chromium passivation coating on galvanized steel [J]. J. Mater. Prot., 2012, 45(2): 35
40 郭晓斐, 王玥, 孙华等. 镀锌层三价铬钝化膜的制备工艺及性能研究 [J]. 材料保护, 2012, 45(2): 35
41 Survilienė S, Češūnienė A, Juškėnas R, et al. The use of trivalent chromium bath to obtain a solar selective black chromium coating [J]. Appl. Surf. Sci., 2014, 305: 492
42 Munson C A, Swain G M. Structure and chemical composition of different variants of a commercial trivalent chromium process (TCP) coating on aluminum alloy 7075-T6 [J]. Surf. Coat. Technol., 2017, 315: 150
43 García-Antón J, Fernández-Domene R M, Sánchez-Tovar R, et al. Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths [J]. Chem. Eng. Sci., 2014, 111: 402
44 Qi J, Zhang B, Wang Z, et al. Effect of an Fe(II)-modified trivalent chromium conversion process on Cr(VI) formation during coating of AA 2024 alloy [J]. Electrochem. Commun., 2018, 92: 1
45 Qi J T, Gao L, Liu Y, et al. Chromate formed in a trivalent chromium conversion coating on aluminum [J]. J. Electrochem. Soc., 2017, 164: C442
46 Hesamedini S, Bund A. Formation of Cr(VI) in cobalt containing Cr(III)-based treatment solution [J]. Surf. Coat. Technol., 2018, 334: 444
47 Lu J, Wu Y Z, Ma C. X-ray photoelectron spectroscopic studies on passivation films on zinc plating coatings formed by trivalent chromium passivating agents [J]. Electroplat. Finish., 2009, 28(4): 26
47 卢进, 吴育忠, 马冲. 镀锌三价铬钝化膜的X射线光电子能谱研究 [J]. 电镀与涂饰, 2009, 28(4): 26
48 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
49 Ely M, Światowska J, Seyeux A, et al. Role of post-treatment in improved corrosion behavior of trivalent chromium protection (TCP) coating deposited on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2017, 164: C276
50 Wang L T, Seyeux A, Marcus P. Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS [J]. Corros. Sci., 2020, 165: 108395
51 Laget V, Jeffcoate C S, Isaacs H S, et al. Dehydration-induced loss of corrosion protection properties in chromate conversion coatings on aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 2003, 150: B425
52 Yu Z Z, Ni H B, Zhang G S, et al. A study of the composition and structure of chromate conversion coating on aluminum [J]. Appl. Surf. Sci., 1992, 62: 217
53 Marcus P, Protopopoff E. Potential-pH diagrams for adsorbed species, application to sulfur adsorbed on iron in water at 25 ℃ and 300 ℃ [J]. J. Electrochem. Soc., 1990, 137: 2709
54 Liu X H, Wu X Q, Han E-H. Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 65: 136
55 Cabrera N, Mott N F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
56 Davenport A J, Burstein G T. Concerning the distribution of the overpotential during anodic oxide film growth [J]. J. Electrochem. Soc., 1990, 137: 1496
57 Burstein G T. The current-time relationship during anodic oxide film growth under high electric field [J]. J. Electrochem. Soc., 1989, 136: 936
58 Fehlner F P. Low temperature oxidation of metals and semiconductors [J]. J. Electrochem. Soc., 1984, 131: 1645
59 Fehlner F P, Mott N F. Low-temperature oxidation [J]. Oxid. Met., 1970, 2: 59
60 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
61 MacDonald D D. Passivity-the key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
62 MacDonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
63 Leistner K, Toulemonde C, Diawara B, et al. Oxide film growth kinetics on metals and alloys: II. Numerical simulation of transient behavior [J]. J. Electrochem. Soc., 2013, 160: C197
64 Goswani K N, Staehle R W. Growth kinetics of passive films on Fe, Fe-Ni, Fe-Cr, Fe-Cr-Ni alloys [J]. Electrochim. Acta, 1971, 16: 1895
65 Bhavani K, Vaidyan V K. Oxidation of iron and influence of an electric field at room temperature [J]. Oxid. Met., 1981, 15: 137
66 Fujii H, Wakabayashi Y, Doi T. Early stages of iron anodic oxidation: Defective growth and density increase of oxide layer [J]. Phys. Rev. Mater., 2020, 4: 033401
67 Fujii H, Wakabayashi Y, Doi T. Kinetics of iron passivation studied by sub-second resolution realtime X-ray reflectivity technique [J]. J. Electrochem. Soc., 2019, 166: E212
68 MacDonald D D. Some personal adventures in passivity—A review of the point defect model for film growth [J]. Russ. J. Electrochem., 2012, 48: 235
69 MacDonald D D. On the existence of our metals-based civilization I. Phase-space analysis [J]. J. Electrochem. Soc., 2006, 153: B213
70 Kim D H, Kim S S, Lee H H, et al. Oxidation kinetics in iron and stainless steel: an in situ X-ray reflectivity study [J]. J. Phys. Chem., 2004, 108B: 20213
71 Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM) [J]. Corros. Sci., 2011, 53: 3186
72 Lv J L, Yang M, Miura H, et al. The effect of surface enriched chromium and grain refinement by ball milling on corrosion resistance of 316L stainless steel [J]. Mater. Res. Bull., 2017, 91: 91
73 Kamrunnahar M, Bao J E, MacDonald D D. Challenges in the theory of electron transfer at passive interfaces [J]. Corros. Sci., 2005, 47: 3111
74 Zhang Y C, MacDonald D D, Urquidi-Macdonald M, et al. Passivity breakdown on AISI Type 403 stainless steel in chloride-containing borate buffer solution [J]. Corros. Sci., 2006, 48: 3812
74 资助项目 国家自然科学基金 (51701038) 和中央高校基本科研业务费专项 (N162503002)
[1] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[3] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[4] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[6] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[7] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[10] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[11] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[12] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[13] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[14] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[15] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.