Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 411-416    DOI: 10.11902/1005.4537.2020.227
  研究报告 本期目录 | 过刊浏览 |
水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟
孙伟松1,2, 于思荣1(), 高嵩3, 姚新宽2, 徐海亮2, 钱冰2, 王冰姿2
1.中国石油大学 (华东) 材料科学与工程学院 青岛 266580
2.淄博市特种设备检验研究院 淄博 255000
3.山东特安特种设备检验检测有限公司 菏泽 274000
Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings
SUN Weisong1,2, YU Sirong1(), GAO Song3, YAO Xinkuan2, XU Hailiang2, QIAN Bing2, WANG Bingzi2
1.School of Meterials Science and Engineering, China University of Petroleum, Qingdao 266580, China
2.Zibo Institute of Special Equipment Inspection, Zibo 255000, China
3.Shandong Te'an Special Equipment Inspection and Testing Co. Ltd. , Heze 274000, China
全文: PDF(2038 KB)   HTML
摘要: 

通过Materials Studio软件建立了石墨烯增强DGEBA/3,3'-DDS交联型环氧树脂模型,采用分子动力学模拟方法研究水分子在不同含量石墨烯 (0%,1.1%,2.3%,3.0%,4.2%和5.8%,质量分数) 增强的环氧树脂防腐涂层内部的扩散过程,为实际环氧树脂防腐涂层的改性提供理论指导。结果表明,水分子在环氧树脂中以氢键结合的“束缚水”和内部微孔中存在的“自由水”两种形式存在,水分子在其内部的扩散主要表现为由自由水的扩散过程,扩散系数随着温度的升高而增大;石墨烯的引入使得水分子的均方位移变化在整个模拟过程中趋于稳定,提高了环氧树脂的阻隔性能,当石墨烯含量为4.2%时,阻隔性能最佳。

关键词 石墨烯增强环氧树脂分子动力学模拟水分子扩散阻隔性能    
Abstract

A model of graphene-enhanced DGEBA/3,3'-DDS cross-linked epoxy resin was established by Materials Studio software, and the diffusion process of water molecules in the anticorrosive coating of graphene-reinforced epoxy resin with different amount of graphene (0%,1.1%,2.3%,3.0%,4.2% and 5.8%,in mass fraction) was studied by molecular dynamics simulation method, aiming to search the theoretical guidance for the actual modification of epoxy resin coating. The results show that the water molecules are present within epoxy resin as two forms, namely the hydrogen bonded "bound water" and "free water" in internal micropores. The migration of water molecules in epoxy resin is mainly accomplished by the diffusion process of “free water” and the diffusion coefficient increased with the increase of temperature. The introduction of graphene makes the mean square displacement of water molecules more stable during the whole simulation process, which improved the barrier property of epoxy resin. In sum, the epoxy resin with addition of 4.2% graphene presented the best barrier performance.

Key wordsgraphene-reinforced epoxy resin    molecular dynamics simulation    water molecule    diffusion    barrier property
收稿日期: 2020-11-06     
ZTFLH:  TQ637.2  
通讯作者: 于思荣     E-mail: yusr@upc.edu.cn
Corresponding author: YU Sirong     E-mail: yusr@upc.edu.cn
作者简介: 孙伟松,男,1982年生,硕士生,工程师

引用本文:

孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
Weisong SUN, Sirong YU, Song GAO, Xinkuan YAO, Hailiang XU, Bing QIAN, Bingzi WANG. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 411-416.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.227      或      https://www.jcscp.org/CN/Y2021/V41/I3/411

图1  环氧树脂分子DGEBA结构图
图2  固化剂分子3,3'-DDS结构图
图3  石墨烯增强DGEBA/3,3'-DDS交联结构
图4  不同温度下水分子在DGEBA/3,3'-DDS树脂中的均方位移变化曲线
图5  水分子在不同含量石墨烯增强DGEBA/3,3'-DDS聚合物内部MSD曲线变化
图6  氧原子与水分子、环氧树脂中羟基及环氧树脂中氨基间的径向分布函数
1 Lv F C, Fu K X, Zhang L, et al. Molecular dynamics simulation of the effect of crosslink density on thermomechanical properties of acid anhydride cured epoxy resin [J]. J. North China Electr. Power Univ., 2019, 46(6): 1
1 律方成, 付可欣, 张磊等. 交联度对酸酐固化环氧树脂热机械性能影响的分子动力学模拟 [J]. 华北电力大学学报 (自然科学版), 2019, 46(6): 1
2 Fu H B, Liu X R, Sun Y, et al. Corrosion resistance of epoxy resin/recrystallized silicon carbide composite [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 373
2 付海波, 刘晓茹, 孙媛等. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 373
3 Han Z Y, Zou L, Ji X Q, et al. Molecular dynamics simulation of epoxy resin/carbon nanotube composites in basin insulators [J]. High Voltage Apparat., 2018, 54(5): 49
3 韩智云, 邹亮, 季笑庆等. 盆式绝缘子环氧树脂/碳纳米管复合材料的分子动力学模拟 [J]. 高压电器, 2018, 54(5): 49
4 Yu H P, Pi B S, Chen P, et al. Thermal and mechanical properties of crosslinked epoxy based on molecular dynamics [J]. J. Beijing Univ. Technol., 2019, 45: 322
4 宇慧平, 皮本松, 陈沛等. 交联环氧树脂热力学性能的分子模拟 [J]. 北京工业大学学报, 2019, 45: 322
5 Kwon S Y, Lee M Y, Yang S. Molecular dynamics approach on the hygroelastic behavior of epoxy/graphene nanocomposites [J]. J. Mechan. Sci. Technol., 2019, 33: 741
6 Geng H Z, Geng W M, Li G F. Friction and wear behavior of carbon nanotube/epoxy composites [J]. J. Xuzhou Inst. Technol. (Nat. Sci. Ed.), 2018, 33(2): 41
6 耿宏章, 耿文铭, 李广芬. 碳纳米管/环氧树脂复合材料摩擦磨损性能 [J]. 徐州工程学院学报 (自然科学版), 2018, 33(2): 41
7 Tian H W, Li W H, Zong C Z, et al. Anti-corrosion properties of epoxy coatings modified by nano-SiO2 [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 365
7 田惠文, 李伟华, 宗成中等. 纳米SiO2改性环氧涂层的防腐性能 [J]. 中国腐蚀与防护学报, 2009, 29: 365
8 Xu Z R, Gao Y L. Simulation calculation on density and dihedral torsion energy of epoxy resin [J]. Chem. Propell. Polym. Mater., 2014, 12(4): 71
8 徐作瑞, 高云亮. 环氧树脂密度与二面角扭转能的仿真计算 [J]. 化学推进剂与高分子材料, 2014, 12(4): 71
9 Cao W W, Jing L C, Geng W M, et al. Preparation of functionalized graphene oxide and its application in anticorrosive coatings [J]. J. Xuzhou Inst. Technol. (Nat. Sci. Ed.), 2019, 34(3): 82
9 曹伟伟, 景立超, 耿文铭等. 功能化氧化石墨烯制备及其在防腐涂层中的应用 [J]. 徐州工程学院学报 (自然科学版), 2019, 34(3): 82
10 Zuo Y Z, Chen L, Zhu B, et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites [J]. J. Mater. Eng., 2018, 46(5): 22
10 左银泽, 陈亮, 朱斌等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究 [J]. 材料工程, 2018, 46(5): 22
11 Du L G, Jiao P Y, Wang X M. Structural modeling of epoxy resin and simulation calculation of glass transition temperature [J]. Insulat. Mater., 2012, 45(2): 44
11 杜灵根, 焦丕玉, 王晓梅. 环氧树脂结构建模及玻璃化转变温度模拟计算 [J]. 绝缘材料, 2012, 45(2): 44
12 Büyüköztürk O, Buehler M J, Lau D, et al. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface [J]. Int. J Solids Struct., 2011, 48: 2131
13 Wu C F, Xu W J. Atomistic molecular modelling of crosslinked epoxy resin [J]. Polymer, 2006, 47: 6004
14 Yaphary Y L, Yu Z C, Lam R H W, et al. Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment [J]. Composites, 2017, 131B: 165
15 Li H, Fan X P, Yue S L, et al. Molecular dynamics simulation of water diffusion in epoxy resin [J]. Comput. Appl. Chem., 2014, 31: 697
15 李惠, 范小平, 岳淑丽等. 水在环氧树脂中扩散的分子动力学模拟 [J]. 计算机与应用化学, 2014, 31: 697
16 Musto P, Mascia L, Ragosta G, et al. The transport of water in a tetrafunctional epoxy resin by near-infrared Fourier transform spectroscopy [J]. Polymer, 2000, 41: 565
17 Musto P, Ragosta G, Scarinzi G, et al. Probing the molecular interactions in the diffusion of water through epoxy and epoxy-bismaleimide networks [J]. J. Polym. Sci., 2002, 40B: 922
18 Cotugno S, Mensitieri G, Musto P, et al. Molecular interactions in and transport properties of densely cross-linked networks: A time-resolved FT-IR spectroscopy investigation of the epoxy/H2O system [J]. Macromolecules, 2005, 38: 801
19 Goudeau S, Charlot M, Vergelati C, et al. Atomistic simulation of the water influence on the local structure of polyamide 6,6 [J]. Macromolecules, 2004, 37: 8072
20 Lin Y C, Chen X. Investigation of moisture diffusion in epoxy system: Experiments and molecular dynamics simulations [J]. Chem. Phys. Lett., 2005, 412: 322
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[3] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[4] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[5] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[6] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[7] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[9] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[10] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[11] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[12] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[13] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[14] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[15] 岳著文, 李镜培, 杨博, 邵伟, 吕韬. Cl-在钢筋混凝土板一维双向扩散的分离变量法解答[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.