Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 301-311     CSTR: 32134.14.1005.4537.2022.077      DOI: 10.11902/1005.4537.2022.077
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能
仇莉1, 李向红2, 雷然2, 邓书端1()
1.西南林业大学材料科学与工程学院 昆明 650224
2.西南林业大学化学工程学院 昆明 650224
Inhibition Performance of Coconut Diethanolamide on Cold Rolled Steel in Trichloroacetic Acid Solution
QIU Li1, LI Xianghong2, LEI Ran2, DENG Shuduan1()
1.Faculty of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
2.College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
全文: PDF(10516 KB)   HTML
摘要: 

采用失重实验、电化学实验、表面形貌测试 (SEM、AFM) 和接触角测试深入研究了0.10 mol/L 三氯乙酸 (Cl3CCOOH) 介质中非离子表面活性剂椰油酸二乙醇酰胺 (CDEA) 对冷轧钢的缓蚀作用;并探究了缓蚀溶液的表面张力和电导率与缓蚀性能的内在关联。结果表明:CDEA对冷轧钢在Cl3CCOOH中有明显的腐蚀抑制作用,20和30 ℃下,CDEA浓度仅为20 mg/L时,缓蚀率可高达95%以上。缓蚀性能随CDEA浓度增大而增强,但随温度的上升而减弱。CDEA在钢表面的吸附是符合Langmuir吸附的、自发的、放热的过程,20~50 ℃下标准吸附Gibbs自由能为-33.6~-33.0 kJ/mol。CDEA为既抑制阴极析氢又抑制阳极溶解的混合型缓蚀剂,其缓蚀机理为“几何覆盖效应”。随CDEA的添加,Nyquist图容抗弧增大,且电荷转移电阻增大。SEM和AFM的微观形貌进一步证实了CDEA显著抑制了Cl3CCOOH溶液对冷轧钢表面的腐蚀。缓蚀钢表面呈现较强的疏水性,其接触角为100.66o。溶液表面张力随CDEA的添加而降低,在钢片浸泡后的溶液表面张力较浸泡前有所增加;溶液电导率随CDEA浓度的增加,在50 mg/L附近出现峰值。

关键词 缓蚀椰油酸二乙醇酰胺三氯乙酸吸附    
Abstract

The corrosion inhibition effect of nonionic surfactant coconut oleic acid diethanolamide (CDEA) on a cold rolled steel in 0.10 mol/L trichloroacetic acid (Cl3CCOOH) solution was studied by mass loss method, electrochemical test, surface morphology characterization (SEM and AFM) and contact angle tester,while the relation of the inhibition performance of CDEA with the surface tension and electrical conductivity of its solution was also studied.The results show that CDEA has obvious corrosion inhibition effect on CRS in Cl3CCOOH solution. The corrosion inhibition efficiency can reach as high as 95% for the CRS corrosion at 20 and 30 ℃ with the CDEA dose of only 20 mg/L. The corrosion inhibition performance increase with the increasing CDEA concentration, but decreases with the rising temperature. The adsorption of CDEA on the CRS surface is in accordance with the Langmuir adsorption, a spontaneous and exothermic process, and the standard free energy of Gibbs adsorption is -33.6--33.0 kJ/mol at 20-50 ℃. CDEA is a mixed corrosion inhibitor that inhibits both the cathodic hydrogen evolution and anodic dissolution, and the corrosion inhibition mechanism is "geometric coverage effect". With the addition of CDEA, the capacitive arc of Nyquist diagram is enlarged, and the charge transference increased. SEM and AFM micrographs further confirm that CDEA significantly inhibited the corrosion of CRS surface in Cl3CCOOH solution. Being treated by CDEA inhibitor, the surface of CRS shows strong hydrophobicity with a water contact angle of 100.66°. The surface tension of the solution decreased with the addition of CDEA, however after immersion test of the steel, the surface tension of the solution with CDEA turned to be higher, in the contrast to the original ones. the electrical conductivity of the solution increases with the concentration of CDEA and reached a peak near 50mg/L.

Key wordsinhibition    coconut oleic acid diethanolamide    steel    trichloroacetic acid    adsorption
收稿日期: 2022-03-17      32134.14.1005.4537.2022.077
ZTFLH:  TG174  
基金资助:国家自然科学基金(52161016);国家自然科学基金(51761036);云南省基础研究计划(202001AV070008);云南省万人计划青年拔尖人才专项(51900109);云南省万人计划产业技术领军人才专项(80201408)
作者简介: 仇莉,女,1989年生,硕士生,助教

引用本文:

仇莉, 李向红, 雷然, 邓书端. 椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 301-311.
QIU Li, LI Xianghong, LEI Ran, DENG Shuduan. Inhibition Performance of Coconut Diethanolamide on Cold Rolled Steel in Trichloroacetic Acid Solution. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 301-311.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.077      或      https://www.jcscp.org/CN/Y2023/V43/I2/301

图1  非离子表面活性剂椰油酸二乙醇酰胺 (CDEA,C11H23CON (CH2CH2OH)2) 的分子结构式
图2  20~50 ℃时0.10 mol/L Cl3CCOOH溶液中腐蚀速率 (v) 和缓蚀率 (ηw) 与CDEA浓度 (c) 的变化曲线
图3  不同温度下0.10 mol/L Cl3CCOOH溶液中c/θ-c关系
T / ℃r2SlopeK / L·mg-1
200.99991.010.95
300.99941.010.68
400.97190.970.48
500.98011.080.32
表1  c/θ-c线性拟合参数
图4  不同温度下0.10 mol/L Cl3CCOOH溶液中lnK-1/T关系
T / ℃ΔG0 / kJ·mol-1ΔH0 / kJ·mol-1ΔS0 / J·mol-1·K-1
20-33.54-28.1818.28
30-33.84-28.1818.67
40-33.03-28.1815.49
50-34.08-28.1818.26
表2  0.10 mol/L Cl3CCOOH溶液中CDEA在钢表面的吸附热力学参数
图5  不同温度下0.10 mol/L Cl3CCOOH溶液中lnK-1/T关系Ea和ln A与c关系
图6  20 ℃时钢片在不含或含一定浓度CDEA的0.10 mol/L Cl3CCOOH溶液中的动电位极化曲线
cmg·L-1EcorrmVIcorrμA·cm-2bcmV·dec-1bamV·dec-1ηp%
0-444732-307167---
10-423165-2359177.5
50-43592-2179087.4
100-42037-2096795.0
表3  20 ℃时钢在空白或含CDEA的0.10 mol/L Cl3CCOOH溶液中的极化曲线参数
图7  20 ℃时冷轧钢在不含或含CDEA的0.10 mol/L Cl3CCOOH溶液中的EIS谱
图8  不含和含有EDEA的Cl3CCOOH溶液等效电路图
c / mg·L-1Rs / Ω·cm2Rt / Ω·cm2RL / Ω·cm2L / H·cm2CPE /μF·cm-2nχ2ηR / %
08.65.810.617.43.89×10-40.983.4×10-3---
1010.928.2------3.0×10-40.832.4×10-379.3
5010.5181.0------2.3×10-40.784.5×10-396.8
10010.78293.1------3.0×10-40.682.6×10-398.0
表4  20 ℃时冷轧钢在不含或含CDEA的0.10 mol/L Cl3CCOOH中的EIS参数
图9  钢片表面的SEM形貌
图10  冷轧钢表面的3D-AFM轻敲振幅和轻敲相位图
CRSRa / nmRq / nmRmax / nm
Before immersion3.634.3933.8
Cl3CCOOH10.613.3102
Cl3CCOOH+CDEA12.315.7131
表5  3D-AFM的表面粗糙度参数
图11  钢片表面在不同条件下的接触角测试
图12  表面张力 (σ) 与CDEA浓度 (c) 的关系
图13  溶液电导率 (к) 与CDEA浓度 (c) 的关系曲线
[1] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
[2] Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review [J]. J. Mol. Liq., 2018, 256: 565
doi: 10.1016/j.molliq.2018.02.045
[3] Zhu Y K, Free M L, Woollam R, et al. A review of surfactants as corrosion inhibitors and associated modeling [J]. Prog. Mater. Sci., 2017, 90: 159
doi: 10.1016/j.pmatsci.2017.07.006
[4] Fuchs-Godec R, Pavlović M G. Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainless-steel X4Cr13 in sulphuric acid [J]. Corros. Sci., 2012, 58: 192
doi: 10.1016/j.corsci.2012.01.027
[5] Osman M M, Shalaby M N. The inhibition properties of some non-ionic surfactants on steel in chloride acid solution [J]. Anti-corros. Meth. Mater., 1997, 44: 318
doi: 10.1108/00035599710177619
[6] Li X H, Deng S D, Fu H, et al. Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution [J].J. Appl. Electrochem., 2009, 39: 1125
doi: 10.1007/s10800-008-9770-5
[7] Algaber A S, El-Nemma E M, Saleh M M. Effect of octylphenol polyethylene oxide on the corrosion inhibition of steel in 0.5 M H2SO4 [J]. Mater. Chem. Phys., 2004, 86: 26
doi: 10.1016/j.matchemphys.2004.01.040
[8] Zhang J, Liu Z, Liu J, et al. Synthesis and inhibition performance of polyethylene glycol (Peg) lauric acid monoester Schiff bases of non-ionic surface active ggent [J]. Corros. Prot., 2014, 35: 775
[8] 张菁, 刘峥, 刘进 等. 聚乙二醇月桂酸单酯席夫碱基非离子型表面活性剂的合成及缓蚀性能 [J]. 腐蚀与防护, 2014, 35: 775
[9] Bedir A G, Abd El-raouf M, Abdel-Mawgoud S, et al. Corrosion inhibition of carbon steel in hydrochloric acid solution using ethoxylated nonionic surfactants based on Schiff base: electrochemical and computational investigations [J]. ACS Omega, 2021, 6: 4300
doi: 10.1021/acsomega.0c05476 pmid: 33623841
[10] Attia A, Abdel-Fatah H T M. Triton X-100 as a non-ionic surfactant for corrosion inhibition of mild steel during acid cleaning [J]. Met. Mater. Int., 2020, 26: 1715
doi: 10.1007/s12540-019-00533-7
[11] Li X H, Deng S D. Synergistic inhibition effect of walnut green husk extract and potassium iodide on the corrosion of cold rolled steel in trichloroacetic acid solution [J]. J. Mater. Res. Technol., 2020, 9: 15604
doi: 10.1016/j.jmrt.2020.11.018
[12] Sampat S S, Vora J C. Corrosion inhibition of 3s aluminium in trichloroacetic acid by methyl pyridines [J]. Corros. Sci., 1974, 14: 591
doi: 10.1016/S0010-938X(74)80023-5
[13] Desai P S, Vashi R T. Inhibitive efficiency of sulphathiazole for aluminum corrosion in trichloroacetic acid [J]. Anti-Corros. Methods Mater., 2011, 58: 70
doi: 10.1108/00035591111110714
[14] Ebenso E E, Okafor P C, Ekpe U J. Studies on the inhibition of aluminium corrosion by 2-acetylphenothiazine in chloroacetic acids [J]. Anti-Corros. Methods Mater., 2003, 50: 414
doi: 10.1108/00035590310501576
[15] Wang L Z, Huang M, Li X H. Inhibition action of calcium lignosulphonate on cold rolled steel in trichloroacetic acid media [J]. Appl. Chem. Ind., 2020, 49: 2711
[15] 王丽姿, 黄苗, 李向红. 三氯乙酸介质中木质素磺酸钙对冷轧钢的缓蚀性能 [J]. 应用化工, 2020, 49: 2711
[16] Wang L Z, Li X H. Adsorption and inhibition behavior of imidazoline on steel surface in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 353
[16] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 353
doi: 10.11902/1005.4537.2020.096
[17] Li X H, Deng S D, Du G B. Nonionic surfactant of coconut diethanolamide as a novel corrosion inhibitor for cold rolled steel in both HCl and H2SO4 solutions [J]. J. Taiwan Inst. Chem. Eng., 2022, 131: 104171
doi: 10.1016/j.jtice.2021.104171
[18] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids [J]. J. Am. Chem. Soc., 1916, 38: 2221
doi: 10.1021/ja02268a002
[19] Mu G N, Li X H, Qu Q, et al. Synergistic effect on corrosion inhibition by cerium (IV) ion and sodium molybdate for cold rolled steel in hydrochloric acid solution [J]. Acta Chim. Sin., 2004, 62: 2386
[19] 木冠南, 李向红, 屈庆 等. 稀土铈 (IV) 离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应 [J]. 化学学报, 2004, 62: 2386
[20] Fernandes C M, Alvarez L X, Dos Santos N E, et al. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses [J]. Corros. Sci., 2019, 149: 185
doi: 10.1016/j.corsci.2019.01.019
[21] Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
doi: 10.1016/S0010-938X(99)00029-3
[22] Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine dye: experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
doi: 10.1016/j.cej.2018.08.079
[23] Branzoi V, Branzoi F, Baibarac M. The inhibition of the corrosion of Armco iron in HCl solutions in the presence of surfactants of the type of N-alkyl quaternary ammonium salts [J]. Mater. Chem. Phys., 2000, 65: 288
doi: 10.1016/S0254-0584(00)00260-1
[24] Zakaria K, Hamdy A, Abbas M A, et al. New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: weight loss, electrochemical and surface studies [J]. J. Taiwan Inst. Chem. Eng., 2016, 65: 530
doi: 10.1016/j.jtice.2016.05.036
[25] Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
doi: 10.1016/S0010-938X(96)00034-0
[26] Gaudin T, Rotureau P, Pezron I, et al. Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships [J]. J. Colloid Interface Sci., 2018, 516: 162
doi: 10.1016/j.jcis.2018.01.051
[27] Zhang D Q, Lu J M, Shi C, et al. Anti-corrosion performance of covalent layer-by-layer assembled films via click chemistry reaction on the copper surface [J]. Corros. Sci., 2021, 178: 109063
doi: 10.1016/j.corsci.2020.109063
[28] Li X H, Deng S D, Li N, et al. Inhibition effect of bamboo leaves extract on cold rolled steel in Cl3CCOOH solution [J]. J. Mater. Res. Technol., 2017, 6: 158
doi: 10.1016/j.jmrt.2016.09.002
[29] El Basiony N M, Badr E E, Baker S A, et al. Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor [J]. Appl. Surf. Sci., 2021, 539: 148246
doi: 10.1016/j.apsusc.2020.148246
[30] De Assunção Araújo Pereira S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
doi: 10.1016/j.corsci.2012.08.038
[31] Singh M M, Gupta A. Corrosion behaviour of mild steel in formic acid solutions [J]. Mater. Chem. Phys., 1996, 46: 15
doi: 10.1016/0254-0584(96)80124-6
[32] Tran T, Brown B, Nešić S, et al. Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel [J]. Corrosion, 2014, 70: 223
doi: 10.5006/0933
[1] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[3] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[4] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[5] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[6] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[7] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[8] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[9] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[10] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[11] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[12] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[13] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[14] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[15] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.