椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能
1.
2.
Inhibition Performance of Coconut Diethanolamide on Cold Rolled Steel in Trichloroacetic Acid Solution
1.
2.
通讯作者: 邓书端,E-mail:dengshuduan@163.com,研究方向为缓蚀剂
收稿日期: 2022-03-17 修回日期: 2022-04-14
基金资助: |
|
Corresponding authors: DNEG Shuduan, E-mail:dengshuduan@163.com
Received: 2022-03-17 Revised: 2022-04-14
Fund supported: |
|
作者简介 About authors
仇莉,女,1989年生,硕士生,助教
采用失重实验、电化学实验、表面形貌测试 (SEM、AFM) 和接触角测试深入研究了0.10 mol/L 三氯乙酸 (Cl3CCOOH) 介质中非离子表面活性剂椰油酸二乙醇酰胺 (CDEA) 对冷轧钢的缓蚀作用;并探究了缓蚀溶液的表面张力和电导率与缓蚀性能的内在关联。结果表明:CDEA对冷轧钢在Cl3CCOOH中有明显的腐蚀抑制作用,20和30 ℃下,CDEA浓度仅为20 mg/L时,缓蚀率可高达95%以上。缓蚀性能随CDEA浓度增大而增强,但随温度的上升而减弱。CDEA在钢表面的吸附是符合Langmuir吸附的、自发的、放热的过程,20~50 ℃下标准吸附Gibbs自由能为-33.6~-33.0 kJ/mol。CDEA为既抑制阴极析氢又抑制阳极溶解的混合型缓蚀剂,其缓蚀机理为“几何覆盖效应”。随CDEA的添加,Nyquist图容抗弧增大,且电荷转移电阻增大。SEM和AFM的微观形貌进一步证实了CDEA显著抑制了Cl3CCOOH溶液对冷轧钢表面的腐蚀。缓蚀钢表面呈现较强的疏水性,其接触角为100.66o。溶液表面张力随CDEA的添加而降低,在钢片浸泡后的溶液表面张力较浸泡前有所增加;溶液电导率随CDEA浓度的增加,在50 mg/L附近出现峰值。
关键词:
The corrosion inhibition effect of nonionic surfactant coconut oleic acid diethanolamide (CDEA) on a cold rolled steel in 0.10 mol/L trichloroacetic acid (Cl3CCOOH) solution was studied by mass loss method, electrochemical test, surface morphology characterization (SEM and AFM) and contact angle tester,while the relation of the inhibition performance of CDEA with the surface tension and electrical conductivity of its solution was also studied.The results show that CDEA has obvious corrosion inhibition effect on CRS in Cl3CCOOH solution. The corrosion inhibition efficiency can reach as high as 95% for the CRS corrosion at 20 and 30 ℃ with the CDEA dose of only 20 mg/L. The corrosion inhibition performance increase with the increasing CDEA concentration, but decreases with the rising temperature. The adsorption of CDEA on the CRS surface is in accordance with the Langmuir adsorption, a spontaneous and exothermic process, and the standard free energy of Gibbs adsorption is -33.6--33.0 kJ/mol at 20-50 ℃. CDEA is a mixed corrosion inhibitor that inhibits both the cathodic hydrogen evolution and anodic dissolution, and the corrosion inhibition mechanism is "geometric coverage effect". With the addition of CDEA, the capacitive arc of Nyquist diagram is enlarged, and the charge transference increased. SEM and AFM micrographs further confirm that CDEA significantly inhibited the corrosion of CRS surface in Cl3CCOOH solution. Being treated by CDEA inhibitor, the surface of CRS shows strong hydrophobicity with a water contact angle of 100.66°. The surface tension of the solution decreased with the addition of CDEA, however after immersion test of the steel, the surface tension of the solution with CDEA turned to be higher, in the contrast to the original ones. the electrical conductivity of the solution increases with the concentration of CDEA and reached a peak near 50mg/L.
Keywords:
本文引用格式
仇莉, 李向红, 雷然, 邓书端.
QIU Li, LI Xianghong, LEI Ran, DENG Shuduan.
与离子型表面活性剂相比,非离子表面活性剂表面活性更高、刺激性小、润湿性好,用作金属缓蚀剂时,更易在金属表面发生吸附[4]。在无机酸溶液中,吐温系列非离子表面活性剂对钢有良好的腐蚀抑制作用,其在钢表面的吸附符合Langmiur吸附等温式[5,6]。聚氧乙烯辛烷基苯基醚 (OPPEO) 在0.5 mol/L H2SO4中在钢表面的吸附符合Flory-Huggins吸附方程,当一个分子OPPE吸附在钢表面时可驱替五个水分子[7]。张菁等[8]研究了在模拟油田水介质中非离子表面活性剂对钢的缓蚀性能,表明聚乙二醇月桂酸单酯希夫碱基非离子型表面活性剂在油田水介质中对钢的缓蚀率可超过80%以上。Bedir等[9]研究表明两种希夫碱基乙氧基化非离子表面活性剂L400和L600在HCl中对碳钢的腐蚀抑制作用明显,对碳钢在HCl中的缓蚀率分别高达92%和94%。50 mg/L的非离子表面活性剂Triton X-100在5%HCl中30 ℃时对碳钢的缓蚀率达77%[10]。值得注意的是,在有机酸介质中非离子表面活性剂对金属的缓蚀研究,公开报道较少。
三氯乙酸 (Cl3CCOOH) 因其较强的酸性 (Ka=0.22),可用于去除金属表面的铁锈和氧化物而被应用于酸洗行业,但在酸洗过程中会对金属材料造成腐蚀。此外,Cl3CCOOH在纤维素制造、除草剂、杀虫剂等化工生产领域中广泛应用,在生产、储存、运输等过程中会对金属器具产生腐蚀作用[11]。故研究Cl3CCOOH溶液中的缓蚀剂具有重要价值。甲基吡啶类化合物[12]、磺胺噻唑[13]、2-乙酰基吩噻嗪[14]等可以作为Al在三氯乙酸溶液中的有效缓蚀剂。本课题组对于抑制钢在Cl3CCOOH溶液中的缓蚀剂做了相关研究,曾研究报道过木质素磺酸钙[15]、咪唑啉[16]能有效抑制钢在Cl3CCOOH中的腐蚀,最大缓蚀率高于90%。然而,关于非离子表面活性剂作为Cl3CCOOH介质中的缓蚀研究少见报道。
非离子表面活性剂椰油酸二乙醇酰胺 (CDEA,C11H23CON (CH2CH2OH)2) 具有优异的表面活性,且无毒无异味。其分子结构中的酰胺基团 (O=C-N) 具有良好的耐水解性;尤为重要的是,和其他非离子表面活性剂相比,CDEA没有浊点。本课题组研究表明CDEA在HCl和H2SO4介质中对冷轧钢具有良好的缓蚀性能[17]。在此基础上,本文采用失重实验和电化学实验研究了CDEA在0.10 mol/L Cl3CCOOH溶液中对钢的缓蚀作用,阐释了其在钢表面的吸附行为;通过钢片表面形貌测试 (SEM和AFM及接触角测试) 表征了钢表面的腐蚀微观形貌和亲水/憎水性;并通过测试溶液的表面张力、电导率进一步探究缓蚀溶液性质和缓蚀性能的内在关联性,以便为CDEA作为冷轧钢的三氯乙酸缓蚀剂的应用提供一定理论基础。
1 实验方法
冷轧钢 (攀枝花钢铁厂) 片试样成分 (质量分数,%) 为:C 0.06、Si 0.02、Mn 0.21、P 0.012、S 0.01,其余为Fe。CDEA为化学纯,分子结构式见图1,Cl3CCOOH为分析纯。
图1
图1
非离子表面活性剂椰油酸二乙醇酰胺 (CDEA,C11H23CON (CH2CH2OH)2) 的分子结构式
Fig.1
Chemical molecular structure of the nonionic surfactant of coconut diethanolamide (CDEA, C11H23CON(CH2CH2OH)2)
电化学实验采用PARSTAT2273电化学工作站进行,采用操作软件Powersuite和三电极系统进行测试:饱和甘汞电极 (SCE) 为参比电极;铂电极 (s=102 mm2) 为对电极;环氧树脂灌封的冷轧钢片 (10 mm×10 mm) 为工作电极。将工作电极钢表面处理后浸泡在250 mL待测溶液中约30 min,待测试体系稳定后进行电化学实验;动电位极化曲线测试参数:扫描区域-0.25~+0.25 V,扫描速率为0.5 mV/s。电化学阻抗谱 (EIS) 的测试参数:105~10-2 Hz,交流激励幅值为±10 mV。
将处理好的钢片试样分别在Zeiss Sigma 300扫描电子显微镜 (SEM)、SPA-400 SPM unit原子力显微镜 (AFM) 和OCA20接触角测量仪进行SEM、AFM的表面形貌检测和接触角测试。
采用环法 (铂环) 在JYW-200A自动表面张力仪上进行表面张力测试,其分辨率为0.01 mN/m。在PE38电导率仪平行3次实验测试各溶液的电导率,采用梅特勒-托莱多标准装置 (1413 μs/cm) 进行校准。
2 结果与讨论
2.1 CDEA对冷轧钢的缓蚀性能 (失重法)
图2a为20~50℃下,冷轧钢在0.10 mol/L Cl3CCOOH溶液中的腐蚀速率 (v) 随CDEA浓度 (c) 的变化曲线。未添加缓蚀剂0.10 mol/L Cl3CCOOH溶液中冷轧钢的腐蚀速率分别为:12.23 (20 ℃)、27.63 (30 ℃)、35.84 (40 ℃) 和38.77 g·m-2·h-1 (50 ℃)。当添加CDEA后,各温度下的v急剧下降,直到当CDEA浓度超过30 mg/L时,v不再随缓蚀剂浓度的增加而明显变化。此外,随着温度的升高,腐蚀速率整体上移,说明升温加快了钢片表面的析氢腐蚀。
图2
图2
20~50 ℃时0.10 mol/L Cl3CCOOH溶液中腐蚀速率 (v) 和缓蚀率 (ηw) 与CDEA浓度 (c) 的变化曲线
Fig.2
Relationship between corrosion rate (v) (a) and inhibition efficiency (ηw) (b) with changing CDEA concen-tration (c) in 0.10 mol/L Cl3CCOOH solution at 20-50 ℃
图2b为20~50 ℃下,缓蚀率 (ηw) 与CDEA浓度 (c) 的关系曲线。显然,当 CDEA浓度为10~30 mg/L时,ηw急速增大,但随后的CDEA浓度处于30~100 mg/L较大浓度范围时,ηw基本平稳。这可能是由于低浓度下的CDEA分子在钢表面的吸附量随浓度增加而急剧增多,但当CDEA浓度大于30 mg/L后缓蚀剂分子在钢表面的吸附量逐渐趋于饱和,故缓蚀性能随CDEA的添加而增长缓慢逐渐趋于平衡值。20和30 ℃两个温度下的CDEA的缓蚀性能相当,说明低温有利于CDEA抑制钢在Cl3CCOOH中的腐蚀。当温度继续升高后,缓蚀率明显下降,这可能与高温时钢表面的腐蚀程度急剧上升,从而导致CDEA分子难以吸附在钢表面,或会使已在钢表面吸附的缓蚀剂分子发生脱附所致。各温度条件下,50 mg/L CDEA的缓蚀率 (ηw) 分别为97.1% (20 ℃)、97.1% (30 ℃)、93.7% (40 ℃)、85.4% (50 ℃),表明CDEA在0.1 mol/L Cl3CCOOH中对钢具有较好的缓蚀性能。
2.2 CDEA在钢片表面的吸附等温式
利用Langmuir吸附模型对失重法实验数据进行拟合[18]。
式中,c为CDEA的物质的量浓度 (mmol/L);θ为CDEA在钢表面的覆盖度,其值约等于缓蚀率;K为吸附平衡常数 (L/mmol)。
图3
图3
不同温度下0.10 mol/L Cl3CCOOH溶液中c/θ-c关系
Fig.3
Relationship of c/θ-c in 0.10 mol/L Cl3CCOOH solu-tion at different temperatures
表1 c/θ-c线性拟合参数
Table 1
T / ℃ | r2 | Slope | K / L·mg-1 |
---|---|---|---|
20 | 0.9999 | 1.01 | 0.95 |
30 | 0.9994 | 1.01 | 0.68 |
40 | 0.9719 | 0.97 | 0.48 |
50 | 0.9801 | 1.08 | 0.32 |
2.3 CDEA在钢片表面的吸附热力学参数
0.10 mol/L Cl3CCOOH溶液中CDEA分子在钢片表面的标准吸附Gibbs自由能 (ΔG0) 通过下式计算[20]:
式中,R为气体常数,取值8.314 J·K-1·mol-1,T为热力学温度 (K),ρsolvent为H2O的质量浓度,约为1.0×106 mg/L[20]。
为深入探讨CDEA分子在缓蚀体系中在钢表面的吸附过程,利用Van't Hoff方程式[21]分析吸附平衡常数 (K) 和温度 (T) 的关系:
图4
图4
不同温度下0.10 mol/L Cl3CCOOH溶液中lnK-1/T关系
Fig.4
Relationship between lnK-1/T in 0.10 mol/L Cl3CCOOH solution at different temperatures
表2 0.10 mol/L Cl3CCOOH溶液中CDEA在钢表面的吸附热力学参数
Table 2
T / ℃ | ΔG0 / kJ·mol-1 | ΔH0 / kJ·mol-1 | ΔS0 / J·mol-1·K-1 |
---|---|---|---|
20 | -33.54 | -28.18 | 18.28 |
30 | -33.84 | -28.18 | 18.67 |
40 | -33.03 | -28.18 | 15.49 |
50 | -34.08 | -28.18 | 18.26 |
2.4 钢在Cl3CCOOH溶液中的腐蚀动力学参数
冷轧钢在Cl3CCOOH溶液中的腐蚀速率 (v) 与温度 (T) 可通过Arrehnius公式进行拟合[24]:
式中,Ea为活化能,A为指前因子。图5a为不同温度下0.10 mol/L Cl3CCOOH溶液中lnv与1/T的线性关系,通过斜率 (-Ea/R) 和截距 (ln A) 可求算出Ea和ln A。Ea和ln A与CDEA的浓度 (c) 的关系见图5b。从
图5
图5
不同温度下0.10 mol/L Cl3CCOOH溶液中lnK-1/T关系Ea和ln A与c关系
Fig.5
Relationship between lnK-1/T (a) relationship between Ea and ln A with c (b) in 0.10 mol/L Cl3CCOOH solution at different temperatures
2.5 钢在含CDEA的Cl3CCOOH溶液中的动电位极化曲线
图6
图6
20 ℃时钢片在不含或含一定浓度CDEA的0.10 mol/L Cl3CCOOH溶液中的动电位极化曲线
Fig.6
Potentiodynamic polarization curves of CRS in 0.10 mol/L Cl3CCOOH solutions without and with CDEA at 20 ℃
式中,Icorr (0)、Icorr (inh) 分别为钢电极在不含和含一定浓度CDEA在0.10 mol/L Cl3CCOOH溶液中的腐蚀电流密度 (μA/cm2)。
表3 20 ℃时钢在空白或含CDEA的0.10 mol/L Cl3CCOOH溶液中的极化曲线参数
Table 3
cmg·L-1 | EcorrmV | IcorrμA·cm-2 | bcmV·dec-1 | bamV·dec-1 | ηp% |
---|---|---|---|---|---|
0 | -444 | 732 | -307 | 167 | --- |
10 | -423 | 165 | -235 | 91 | 77.5 |
50 | -435 | 92 | -217 | 90 | 87.4 |
100 | -420 | 37 | -209 | 67 | 95.0 |
如表3所示,Icorr在0.10 mol/L Cl3CCOOH溶液中高达732 μA/cm2,冷轧钢表面遭受了剧烈的腐蚀,但添加CDEA后Icorr急速下降,且随缓蚀剂浓度的增加而下降,当添加100 mg/L CDEA时,Icorr降至37 μA/cm2。ηp随c的增加而增大,100 mg/L时高达95.0%,与失重法的缓蚀率 (ηw=97.4%) 较为吻合且规律一致。此外,添加CDEA后,腐蚀电位 (Ecorr) 最大正移24 mV,改变幅度较小;进一步表明CDEA在Cl3CCOOH溶液中为混合型缓蚀剂,并可推断其缓蚀机理为“几何覆盖效应”[25]。在0.10 mol/L Cl3CCOOH溶液中,随着CDEA的添加,阴极斜率 (bc) 增大,而阳极斜率 (ba) 减小。这可能是由于CDEA分子在钢电极表面吸附覆盖后,造成缓蚀剂的电位随电流密度的变化规律而改变。
2.6 钢在含CDEA的Cl3CCOOH溶液中的EIS
图7a为钢片在不含或含有不同浓度CDEA的0.10 mol/L Cl3CCOOH溶液中的Nyquist图。未添加CDEA的Cl3CCOOH溶液Nyquist图由高频区的大段容抗弧和低频区的小段感抗弧组成,高频区的容抗弧表明钢的腐蚀为电荷转移控制,而感抗弧则是与Cl3CCOO-在电极表面的吸脱附引起的不平衡状态有关[15,16]。值得注意的是,当添加CDEA后,低频区的感抗弧部分几乎很难分辨。各条件下的高频区的容抗弧不是一个完整的半圆,说明电极腐蚀过程中存在因电极表面粗糙、不均匀引起的频率弥散效应[26]。此外,容抗弧半径随CDEA的添加而增大,说明电极表面的阻抗增加,即钢片表面难以腐蚀,腐蚀速率降低,从而缓蚀效果增强。
图7
图7
20 ℃时冷轧钢在不含或含CDEA的0.10 mol/L Cl3CCOOH溶液中的EIS谱
Fig.7
Nyquist plots (a) and Bode modulus and Bode phases (b) of the corrosion of CRS in 0.10 mol/L Cl3CCOOH solutions without and with CDEA at 20 ℃
式中,Rt(inh)、Rt(0) 为含有CDEA、空白Cl3CCOOH溶液中电极腐蚀过程中的电荷转移电阻 (Ω·cm2)。
图8
图8
不含和含有EDEA的Cl3CCOOH溶液等效电路图
Fig.8
Equivalent circuit diagram without Rs (CPERt(LRL)) (a) and with EDEA Rs(CPERt) (b)
表4 20 ℃时冷轧钢在不含或含CDEA的0.10 mol/L Cl3CCOOH中的EIS参数
Table 4
c / mg·L-1 | Rs / Ω·cm2 | Rt / Ω·cm2 | RL / Ω·cm2 | L / H·cm2 | CPE /μF·cm-2 | n | χ2 | ηR / % |
---|---|---|---|---|---|---|---|---|
0 | 8.6 | 5.8 | 10.6 | 17.4 | 3.89×10-4 | 0.98 | 3.4×10-3 | --- |
10 | 10.9 | 28.2 | --- | --- | 3.0×10-4 | 0.83 | 2.4×10-3 | 79.3 |
50 | 10.5 | 181.0 | --- | --- | 2.3×10-4 | 0.78 | 4.5×10-3 | 96.8 |
100 | 10.78 | 293.1 | --- | --- | 3.0×10-4 | 0.68 | 2.6×10-3 | 98.0 |
由表4所示,数据拟合卡方值χ2较小,表明所用等效电路图拟合出的理论数据和试验数据较为一致。n<1,说明电极/溶液界面存在频率弥散效应,在0.10 mol/L Cl3CCOOH溶液中,随着CDEA的添加,n值降至0.68,偏离1的幅度较大,说明缓蚀体系中频率弥散效应强度增大,可能与缓蚀剂CDEA分子在电极/溶液界面吸附、脱附过程有关。CPE整体呈下降趋势,可能由于缓蚀剂CDEA分子挤走了吸附在钢表面的水分子,随CDEA浓度的增加,缓蚀剂吸附层厚度增加所致。空白的Cl3CCOOH溶液在低频区存在电感参数RL和L,可能与溶液中酸根离子或水分子在电极表面的“吸附/脱附”过程引起的扰动有关[28]。Rt在0.10 mol/L Cl3CCOOH缓蚀体系中仅为5.83 Ω·cm2,添加CDEA,其值显著增大,且随CDEA浓度的添加而增大,说明CDEA对钢在Cl3CCOOH溶液中具有较强的缓蚀效果。当溶液中CDEA为100 mg/L时,ηR达98.0%,与失重法所得数值 (97.4%) 基本吻合。
2.7 SEM微观形貌分析
图9
图9
钢片表面的SEM形貌
Fig.9
SEM microscopic images of steel sheet surfaces: (a) before corrosion; (b) after corrosion in 0.10 mol/L Cl3CCOOH solution for 6 h; (c) after corrosion in 100 mg/LCDEA+0.10 mol/L Cl3CCOOH solution for 6 h
2.8 3D-AFM微观形貌分析
图10为钢片在不同条件下的3D-AFM微观形貌、幅度和相位图。图10a为钢片刚打磨好的3D-AFM形貌,表面伴有打磨留下的红色“沟壑”划痕;从图10b可见钢表面有少量白色物质。通过观察可见,少量白色颗粒和白色条状物体覆盖在红色基体上,如图10c。图10d为0.10 mol/L Cl3CCOOH溶液中浸泡6 h后的钢表面形貌,表面凹凸不平,较为粗糙,图10e显示钢表面产生了大量“砂浆”状的腐蚀产物,从图10f可见,腐蚀产物覆盖在整个钢表面,只见零星少量的红色基体。说明Cl3CCOOH溶液对冷轧钢产生了较强烈的腐蚀。图10g为钢片含有100 mg/L CDEA的0.10 mol/L Cl3CCOOH溶液中浸泡6 h后的表面形貌,较图10d相比表面平整许多,伴有少许白色“山峰”,从图10h可见包状产物大量吸附在钢表面,形成较厚的吸附膜层。由图10i可知,少许“盐粒”状白色小颗粒均匀分布在基体上,红色基体清晰可见,说明Cl3CCOOH对钢的腐蚀程度降低。AFM微观形貌测试进一步说明了缓蚀剂CDEA对钢在Cl3CCOOH溶液中具有较强的缓蚀性能。
图10
图10
冷轧钢表面的3D-AFM轻敲振幅和轻敲相位图
Fig.10
3D-AFM (a, d, g), tapping amplitude and tapping phase images (b, c, e, f, h, i) of CRS surfaces: (a-c) before corrosion; (d-f) after corrosion at 20 ℃ in 0.10 mol/L Cl3CCOOH solution for 6 h; (g-i) after corrosion at 20 ℃ in 0.10 mol/L Cl3CCOOH solution containing 100 mg/L CDEA for 6 h
3D-AFM的表面粗糙度参数详见表5,Ra为平均粗糙度,Rq为均方根表面粗糙度,Rmax为表面最大起伏度。据表5,刚打磨好的钢片表面的Ra、Rq、Rmax最小,说明表面较为平整光滑。但在0.10 mol/L Cl3CCOOH溶液中浸泡6 h后,钢表面的Ra、Rq、Rmax增大,说明Cl3CCOOH溶液中的Cl3CCOO-、H+大量吸附在钢片表面,对钢产生了严重的腐蚀,大量的腐蚀物质吸附在钢表面。值得注意的是,在Cl3CCOOH溶液中添加CDEA后,Ra、Rq、Rmax进一步增大,这可能由于体系中缓蚀剂分子在浸泡后的钢片表面形成了起伏较大的吸附膜层,或吸附膜层较薄的钢表面发生严重腐蚀,故表面粗糙度相对较大。
表5 3D-AFM的表面粗糙度参数
Table 5
CRS | Ra / nm | Rq / nm | Rmax / nm |
---|---|---|---|
Before immersion | 3.63 | 4.39 | 33.8 |
Cl3CCOOH | 10.6 | 13.3 | 102 |
Cl3CCOOH+CDEA | 12.3 | 15.7 | 131 |
2.9 钢表面接触角测试
图11为钢表面不同条件下的接触角测试图。图11a所示刚打磨好的钢表面接触角为锐角 (66.76°),说明钢表面具有亲水性,Cl3CCOOH溶液较容易湿润钢表面而产生腐蚀。图11b所示在Cl3CCOOH溶液中浸泡6 h后的表面接触角减小至54.55°,这可能与钢表面遭受了剧烈腐蚀有关,钢表面亲水性进一步增强,故Cl3CCOOH溶液进一步渗透对钢会产生持续不断的腐蚀。图11c为钢在含有100 mg/L CDEA的0.10 mol/L Cl3CCOOH溶液中浸泡6 h后的表面,接触角增大至100.66°,即钢表面由亲水性转变为疏水性,有利于降低Cl3CCOOH溶液对钢表面的腐蚀。接触角测试进一步说明缓蚀剂CDEA对钢在Cl3CCOOH中具有较好的腐蚀抑制作用。
图11
图11
钢片表面在不同条件下的接触角测试
Fig.11
Contact angel measurements on steel surfaces with different conditions: (a) before corrosion; (b) after 6 h corrosion in 0.10 mol/L Cl3CCOOH at 20 ℃; (c) after 6 h corrosion in 0.10 mol/L Cl3CCOOH solutions containing 100 mg/L CDEA at 20 ℃
2.10 溶液表面张力分析
图12为常温时,不同条件下溶液表面张力 (σ) 与CDEA浓度 (c) 的关系曲线。从图12可以看出,随缓蚀剂CDEA的添加,各条件溶液表面张力急速减小后趋于平缓;这是由于表面活性剂含有两种基团 (疏油基和憎水基),憎水基倾向于从水中逸出,吸附在水表面,紧密排列在水面上所致[29]。CDEA水溶液的σ-c曲线在50 mg/L附近出现了拐点,可视为临界胶束浓度 (CMC)。与CDEA水溶液相比,在Cl3CCOOH介质中的CDEA溶液的表面张力曲线整体下移,且CMC降至30 mg/L,故在酸介质中的CDEA的表面活性较高。当钢片腐蚀浸泡6 h后,Cl3CCOOH介质中的CDEA溶液的表面张力较浸泡前溶液表面张力大,可能由于缓蚀剂CDEA分子由从溶液中转移到钢片表面,形成吸附膜,降低了Cl3CCOOH溶液中的缓蚀剂CDEA浓度而导致。
图12
图12
表面张力 (σ) 与CDEA浓度 (c) 的关系
Fig.12
Relationship between surface tension (σ) and CDEA concentration (c)
2.11 溶液电导率分析
图13为不同条件下溶液电导率 (к) 随浓度 (c) 变化的曲线图。由图13可知,CDEA水溶液的电导率非常小,这可能与非离子表面活性剂CDEA在溶液中几乎不会发生电离有关;且随CDEA浓度的增加而增大。在Cl3CCOOH介质中的CDEA溶液电导率急剧增大,这主要是由于Cl3CCOOH的酸性较强,在水溶液中会电离生成H+和Cl3CCOO-所致,故使溶液的电导率急剧增加。从图13可见,钢片浸泡前后的Cl3CCOOH介质中的CDEA溶液的缓蚀体系,电导率随CDEA浓度增加呈“峰”状,在缓蚀剂CDEA浓度为50 mg/L时达到最大,分别为41.99 ms/cm和41.49 ms/cm。这可能是由于高浓度的CDEA一定程度抑制了Cl3CCOOH在水溶液中的电离所致。
图13
图13
溶液电导率 (к) 与CDEA浓度 (c) 的关系曲线
Fig.13
Relationship between the electrical conductivity (к) of solution and CDEA (c)
未添加缓蚀剂的Cl3CCOOH溶液,在钢片腐蚀浸泡6 h后的电导率有所降低,这主要是由于H+与钢表面发生腐蚀反应被消耗所致;但当腐蚀介质中添加CDEA后,电导率几乎和浸泡前的相等,这表明CDEA有效抑制了溶液中H+与钢片反应的消耗,即CDEA在冷轧钢在Cl3CCOOH溶液中表现出良好的缓蚀性能。
2.12 钢片在Cl3CCOOH溶液中的腐蚀及CDEA缓蚀机理探讨
常温下,Cl3CCOOH的酸电离平衡常数 (Ka) 为0.22,在H2O中发生电离:
实验中,可观察到钢片表面析出大量气泡,钢片在0.10 mol/L Cl3CCOOH溶液 (PH计算值为1.13) 中发生析氢腐蚀。依据文献[30],阴极反应 (2H++2e-→H2↑) 机理含有如下过程:
综上,在Cl3CCOOH溶液中,产生的Cl3CCOO- 和H+导致了冷轧钢的腐蚀。缓蚀剂CDEA在Cl3CCOOH溶液中的缓蚀机理推测如下:CDEA分子结构中包含亲水的极性基团 (-OH、-CONH2、-N H2) 和疏水的极性基团 (-C11H23)。冷轧钢表面吸附了大量的亲水极性基团,而疏水的极性基团在缓蚀体系中阻止溶液对钢表面的腐蚀,从而有效提高了钢表面的耐腐蚀能力。同时,CDEA在酸性介质中发生质子化反应而带正电荷,与阳极腐蚀反应过程的中间产物 (FeCH3COO-)ads通过静电引力作用吸附在钢片表面,Cl3CCOOH与钢片表面的接触面积随之减少,从而抑制钢表面的腐蚀。此外,Fe的空d轨道与CDEA分子结构中N、O的孤对电子形成配位键,发生化学吸附[16]。从而有效抑制了Cl3CCOOH对钢片的腐蚀。
3 结论
(1) CDEA在0.10 mol/L Cl3CCOOH溶液中能有效抑制钢的腐蚀,低温时,CDEA浓度为20 mg/L时缓蚀率可达95%以上,且排序为:20 ℃≈30 ℃>40 ℃>50 ℃。CDEA在钢表面的吸附与Langmuir吸附模型吻合,吸附过程中混乱度增大,释放热量到环境中,为化学吸附和物理吸附相结合的混合吸附类型。表观活化能和指前因子均随CDEA的添加而明显增大。
(2) CDEA为通过“几何覆盖效应”作用的混合抑制型缓蚀剂。Nyquist图的高频区容抗弧半径随CDEA的添加而增大,电荷转移电阻增大,而常相位角元件下降。SEM和AFM进一步证实了CDEA对钢在0.10 mol/L Cl3CCOOH溶液中具有较强的腐蚀抑制作用。加入CDEA后钢表面接触角由锐角增大至钝角,由亲水性变为疏水性。当钢片在含CDEA的Cl3CCOOH溶液中腐蚀浸泡后,表面张力增大,而电导率几乎没有变化。
参考文献
The cost of corrosion in China
[J].Corrosion is a ubiquitous and costly problem for a variety of industries. Understanding and reducing the cost of corrosion remain primary interests for corrosion professionals and relevant asset owners. The present study summarises the findings that arose from the landmark “Study of Corrosion Status and Control Strategies in China”, a key consulting project of the Chinese Academy of Engineering in 2015, which sought to determine the national cost of corrosion and costs associated with representative industries in China. The study estimated that the cost of corrosion in China was approximately 2127.8 billion RMB (~ 310 billion USD), representing about 3.34% of the gross domestic product. The transportation and electronics industries were the two that generated the highest costs among all those surveyed. Based on the survey results, corrosion is a major and significant issue, with several key general strategies to reduce the cost of corrosion also outlined.
Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review
[J].
A review of surfactants as corrosion inhibitors and associated modeling
[J].
Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainless-steel X4Cr13 in sulphuric acid
[J].
The inhibition properties of some non-ionic surfactants on steel in chloride acid solution
[J].The inhibition effect of some non‐ionic surfactants Tween 20, Tween 40, Tween 60, Tween 80 and O1 (EO)20 on steel in acidic chloride solution has been investigated by studying their adsorption behaviour and the use of the gravimetric method in order to determine the inhibition efficiency. The results obtained show that these compounds are very good inhibitors. High inhibition efficiency is observed around their critical micelle concentrations (CMC), and it increases with the number of carbon atoms in the chain length of their molecules.
Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution
[J].
Effect of octylphenol polyethylene oxide on the corrosion inhibition of steel in 0.5 M H2SO4
[J].
Synthesis and inhibition performance of polyethylene glycol (Peg) lauric acid monoester Schiff bases of non-ionic surface active ggent
[J].
聚乙二醇月桂酸单酯席夫碱基非离子型表面活性剂的合成及缓蚀性能
[J].
Corrosion inhibition of carbon steel in hydrochloric acid solution using ethoxylated nonionic surfactants based on Schiff base: electrochemical and computational investigations
[J].Two ethoxylated nonionic surfactants (L400 and L600) based on Schiff base are prepared from polyoxyethylene, glyoxalic acid, and phenylenediamine. They are evaluated electrochemically as carbon steel corrosion inhibitors in 1 M HCl by electrochemical impedance spectroscopy (EIS) and Tafel techniques and complemented with microscopic analysis methods. The obtained Tafel data indicate the mixed-type behavior of the inhibitor used. The inhibition efficiency touches the peak at 1 × 10 M, exhibiting 92 and 94% for L400 and L600, respectively. The presence of the tested inhibitors decreases corrosion current density () and double-layer capacitance () due to the formation of a protective adsorption layer in place of the already adsorbed water and aggressive Cl ions. Both L400 and L600 adsorption modes follow Langmuir adsorption isotherm. The density functional theory (DFT) calculated indices (Δ and ) indicate the superiority of L600 over the L400 counterpart as a reactive compound. Adsorption of L600 and L400 over the Fe(1 1 0) in simulated acidic medium is investigated by Monte Carlo (MC) simulation to verify their inhibition performance and are matched with adsorption free energy Δ calculated values. Both experimental and theoretical data are in agreement.© 2021 The Authors. Published by American Chemical Society.
Triton X-100 as a non-ionic surfactant for corrosion inhibition of mild steel during acid cleaning
[J].Triton-X 100 (Octylphenolpoly(ethyleneglycolether)(9-10)), was investigated as corrosion inhibitor during the acid cleaning for mild steel in 5% HCl (similar to 0.0137 M) by gravimetric and electrochemical polarization methods in the presence of different concentrations of Triton-X 100 of 5, 10, 20 and occasionally by 50 ppm at different of temperatures of 30, 45, and 60 degrees C. The gravimetric results showed maximum inhibition efficiency of similar to 77% when 50 ppm of Triton-X 100 used at 30 degrees C, while the potentiodynamic polarization measurements showed a maximum inhibition efficiency of similar to 63% when 20 ppm were used. The adsorption isotherms followed the Langmuir isotherm. The adsorption of TX-100 is a spontaneous process; accompanied by a decrease in entropy upon increasing the concentration of TX-100. Electrochemical polarization measurements support the finding of weight loss data. The results from this work can be useful to relevant industrial sectors of using this surfactant as corrosion inhibitor during acid cleaning. Graphic
Synergistic inhibition effect of walnut green husk extract and potassium iodide on the corrosion of cold rolled steel in trichloroacetic acid solution
[J].
Corrosion inhibition of 3s aluminium in trichloroacetic acid by methyl pyridines
[J].
Inhibitive efficiency of sulphathiazole for aluminum corrosion in trichloroacetic acid
[J].The purpose of this paper is to investigate the effect that different concentrations of the inhibitor sulphathiazole have on the corrosion of aluminum in 0.01, 0.05 and 0.10 M trichloroacetic acid (TCA), and to elucidate the mechanisms of inhibition for this system.
Studies on the inhibition of aluminium corrosion by 2-acetylphenothiazine in chloroacetic acids
[J].The inhibition of corrosion of aluminium in chloroacetic acids, namely monochloroacetic acid (MCA), dichloroacetic acid (DCA) and trichloroacetic acid (TCA) solutions, using 2‐acetylphenothiazine (2APTZ) at 30 and 40°C, at concentrations of 1×10−3M, 1×10−4M, 7.5×10−5M, 5×10−5M and 1×10−5M, was studied using the weight loss and hydrogen evolution techniques. At the highest concentration studied, using the hydrogen evolution technique, an inhibition efficiency of 86.16 per cent was obtained. The investigation revealed that 2APTZ inhibited the corrosion reaction. A physical adsorption mechanism is proposed on the basis of the obtained average Ea values of 76.05 kJ/mol for MCA, 70.75 kJ/mol for DCA and 68.52 kJ/mol for TCA. 2APTZ was confirmed to obey the Freundlish adsorption isotherm equation at the concentration studied. The two techniques employed revealed a first‐order kinetics.
Inhibition action of calcium lignosulphonate on cold rolled steel in trichloroacetic acid media
[J].
三氯乙酸介质中木质素磺酸钙对冷轧钢的缓蚀性能
[J].
Adsorption and inhibition behavior of imidazoline on steel surface in trichloroacetic acid solution
[J].
三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为
[J].采用失重法、动电位极化曲线、电化学阻抗谱探究了在三氯乙酸 (Cl<sub>3</sub>CCOOH) 溶液中0~500 mg/L咪唑啉 (IM) 缓蚀剂对冷轧钢的缓蚀性能,并通过SEM、AFM及接触角测试表征钢表面微观形貌结构和亲水/疏水性。采用量子化学理论探讨了IM在钢表面的吸附方式及质子化作用对缓蚀剂分子吸附行为的影响。结果表明:IM能有效减缓冷轧钢在0.10 mol/L Cl<sub>3</sub>CCOOH溶液中的腐蚀,20 ℃下500 mg/L缓蚀剂 IM的缓蚀率超过95%。IM的吸附服从Langmuir吸附等温式,在钢表面发生的吸附作用为混合吸附。动电位极化曲线显示IM属于混合抑制型缓蚀剂。冷轧钢在未添加和添加一定缓蚀剂IM的0.10 mol/L Cl<sub>3</sub>CCOOH中的Nyquist图谱均由高频区的容抗弧和低频区的感抗弧构成;加入IM后电荷转移电阻、电感电阻和电感值均显著增加。在添加IM的溶液中,钢表面腐蚀程度急剧降低,而疏水性增强。量子化学计算表明,IM易发生质子化生成p-IM,质子化后给电子能力减弱,接受电子能力加大。
Nonionic surfactant of coconut diethanolamide as a novel corrosion inhibitor for cold rolled steel in both HCl and H2SO4 solutions
[J].
The constitution and fundamental properties of solids and liquids. Part I. Solids
[J].
Synergistic effect on corrosion inhibition by cerium (IV) ion and sodium molybdate for cold rolled steel in hydrochloric acid solution
[J].
稀土铈 (IV) 离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应
[J].用失重法和电化学法研究了盐酸介质中,稀土铈(IV)离子和钼酸钠对冷轧钢的缓蚀协同效应.研究结果表明,钼酸钠和稀土Ce<sup>4+</sup>对冷轧钢都有一定的缓蚀作用,但最大缓蚀率不超过42%.通过吸附模型的讨论发现,在Langmuir吸附模型的基础上进行校正后的模型能更合理地解释实验结果,并求出了三个吸附参数.通过对比实验,发现稀土铈(IV)离子和钼酸钠对冷轧钢产生了明显的缓蚀协同效应,最大缓蚀率可达90%左右.
Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses
[J].1-benzyl-4-phenyl-1H-1,2,3-triazole was prepared using an environmental friendly and facile synthetic procedure and its performance as an organic corrosion inhibitor for mild steel in 1.0 mol L-1 HCl was investigated using four different methods. An average efficiency of 81.7% was obtained with 2.13 mmol L-1 solutions of the organic compound. A new approach to classical electrochemical analyses confirms the inhibitor adsorption on the metal surface. Temperature effect studies in the oxidation inhibition behavior as well as calculated thermodynamic parameters are consistent with a chemisorption process and Atomic Force Microscopy shows the formation of a protective film.
The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid
[J].
A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine dye: experimental and theoretical approach
[J].
The inhibition of the corrosion of Armco iron in HCl solutions in the presence of surfactants of the type of N-alkyl quaternary ammonium salts
[J].
New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: weight loss, electrochemical and surface studies
[J].
On electrochemical techniques for interface inhibitor research
[J].
Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships
[J].
Anti-corrosion performance of covalent layer-by-layer assembled films via click chemistry reaction on the copper surface
[J].
Inhibition effect of bamboo leaves extract on cold rolled steel in Cl3CCOOH solution
[J].
Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor
[J].
Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution
[J].
Corrosion behaviour of mild steel in formic acid solutions
[J].
Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel
[J].Acetic acid (CH3COOH) is recognized as an important factor in mild steel corrosion. Similar to carbonic acid (H2CO3) present in carbon dioxide (CO2)-saturated aqueous environments, acetic acid is a weak acid, which partially dissociates with the equilibrium being a function of pH and the solution temperature. Stronger than carbonic acid (pKa 4.76 vs. 6.35 at 25°C), acetic acid is the main source of hydrogen ions when the concentration of each acid is the same. Based on many different studies, it is agreed that acetic acid enhances the corrosion rate of mild steel by accelerating the rate of the cathodic (reduction) reaction. However, the electrochemical mechanism of acetic acid reduction at the metal surface is still being debated. One possibility is for the undissociated acetic acid to provide additional hydrogen ions by dissociation near the metal surface. In that case the main cathodic reduction is hydrogen ion reduction, and this mechanism is commonly referred to as a “buffering effect.” If, in addition to this pathway for hydrogen evolution, there is a reduction of the adsorbed undissociated acetic acid at the metal surface, the mechanism is known as “direct reduction.” In the present study, electrochemical techniques were used to investigate the effect of acetic acid on the cathodic reaction mechanism. It was found that the presence of acetic acid affects only the overall cathodic limiting current, but had no significant effect on the cathodic charge-transfer current. The latter was found to respond only to a change of pH. It was therefore concluded that the buffering effect mechanism is correct.
/
〈 |
|
〉 |
