Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1367-1374     CSTR: 32134.14.1005.4537.2022.365      DOI: 10.11902/1005.4537.2022.365
  研究报告 本期目录 | 过刊浏览 |
酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用
吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆(), 李燚周()
中国海洋大学材料科学与工程学院 青岛 266100
Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution
LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun(), LI Yizhou()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
Zhengping LYU, Yuan LI, Xiaohang LIU, Zhongyu CUI, Hongzhi CUI, Xin WANG, Kun PANG, Yizhou LI. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1367-1374.

全文: PDF(8660 KB)   HTML
摘要: 

通过失重测量、电化学测试和扫描电镜 (SEM) 研究了酸性氯化钠溶液中硝酸钠 (NaNO3) 和硫脲 (TU) 对铝合金缝隙腐蚀行为的影响。结果表明,酸性氯化钠溶液中NaNO3和TU对铝合金的腐蚀均有一定的抑制作用,二者同时存在时表现出良好的协同抑制效应。当试样表面存在缝隙结构时,NaNO3能抑制缝隙外铝合金的腐蚀,然而却促使缝隙内铝合金发生了严重的腐蚀,这主要是因为缝隙内NO3-还原产生的次生产物NH3能够选择性溶解铝合金的富铜相,诱导点蚀萌生,进而引发缝隙腐蚀。在含有TU的腐蚀介质中,缝隙内金属的腐蚀比较轻微,但是TU对缝隙外的抑制作用较差,缝隙外铝合金仍然发生明显的腐蚀现象。同时加入TU和NaNO3时,TU能吸附在铝合金表面,形成的保护膜能阻碍腐蚀性离子及NH3与铝合金接触,从而抑制缝隙内腐蚀的发生,同时NaNO3能够促进缝隙外金属表面钝化膜的形成,从而有效抑制缝隙外金属的腐蚀。因此,TU和NaNO3对铝合金缝隙腐蚀具有协同抑制效应。

关键词 铝合金缓蚀剂缝隙腐蚀协同效应    
Abstract

The effect of NaNO3 and TU on the crevice corrosion of 7075 Al-alloy were investigated by mass loss measurements, electrochemical tests and scanning electron microscopy (SEM) in acidic sodium chloride solution. NaNO3 and TU show a certain inhibited effect on the corrosion of Al-alloy, respectively. Moreover, NaNO3 and TU could inhibit synergistically the corrosion of aluminum alloy. For the specimen with crevice, NaNO3 could inhibit the corrosion of specimen outside crevice. However, it could promote the corrosion of specimen inside crevice. It could be attributed to that the produced NH3 inside crevice due to the reduction of nitrate could selectively dissolve the intermetallic particles and induce the nucleation of pitting corrosion inside crevice. In the solution containing TU, the specimen inside crevice is hardly corroded, however, the specimen outside crevice is still seriously corroded. In the solution with NaNO3 and TU, the TU could adsorb on metal surface and inhibit the pitting corrosion inside crevice, while the NaNO3 could promote the formation passive film and inhibit the corrosion of specimen outside crevice.

Key wordsAl-alloy    corrosion inhibitor    crevice corrosion    synergistic effect
收稿日期: 2022-11-21      32134.14.1005.4537.2022.365
ZTFLH:  TG172  
基金资助:国家自然科学基金(51901217)
通讯作者: 李燚周,E-mail: liyizhou@ouc.edu.cn,研究方向为材料腐蚀与防护;
逄昆,E-mail: pangkun@ouc.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: LI Yizhou, E-mail: liyizhou@ouc.edu.cn;
PANG Kun, E-mail: pangkun@ouc.edu.cn
作者简介: 吕正平,女,1991年生,硕士生
图1  缝隙装置图
图2  7075铝合金在含1% NaCl的pH=1溶液中添加不同缓蚀剂的极化曲线
图3  7075-T651铝合金在不同溶液中的Nyquist图和相应的拟合电路
Inhibitor

Rs

Ω·cm2

Y0(Qdl)

Ω-1·cm-2·s n

n

Rct

Ω·cm2

Y0(Qf)

Ω-1·cm-2·s n

n

Rf

Ω·cm2

Rl

Ω·cm2

L
Blank6.9764×10-40.772.29---2.470.21
NaNO36.951.21×10-40.89188.9---123.8358
TU8.951.0×10-40.9676.22--43.5822.23
NaNO3 +TU8.977.51×10-50.93438.161.5*10-30.9729380.3925.88
表1  7075铝合金在不同溶液中的电化学阻抗拟合参数
InhibitorVcorr / g·m-2·h-1η / %
Blank27.085-
NaNO32.91589.24
TU6.0477.7
NaNO3 + TU0.62597.69
表2  7075铝合金在不同溶液中浸泡24 h后的失重结果
图4  7075在不同溶液中浸泡24 h的宏观形貌、3D轮廓图和微观形貌
图5  7075铝合金在不同溶液中浸泡24 h的缝隙内外的电位变化曲线
图6  7075铝合金在不同溶液中浸泡24 h后缝隙内外的宏观形貌和微观形貌
图7  7075铝合金在不同溶液中的缝隙腐蚀机理图
1 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
2 Allachi H, Chaouket F, Draoui K. Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides [J]. J. Alloy. Compd., 2010, 491: 223
doi: 10.1016/j.jallcom.2009.11.042
3 Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corros. Sci., 2006, 48: 4202
doi: 10.1016/j.corsci.2006.02.007
4 Rodič P, Milošev I. The influence of additional salts on corrosion inhibition by cerium(III) acetate in the protection of AA7075-T6 in chloride solution [J]. Corros. Sci., 2019, 149: 108
doi: 10.1016/j.corsci.2018.10.021
5 Hill J A, Markley T, Forsyth M, et al. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate [J]. J. Alloy. Compd., 2011, 509: 1683
doi: 10.1016/j.jallcom.2010.09.151
6 Jin Z L, Cai C R, Hashimoto T, et al. The behaviour of iron-containing intermetallic particles in aluminium alloys in alkaline solution [J]. Corros. Sci., 2021, 179: 109134
doi: 10.1016/j.corsci.2020.109134
7 Li Y Z, Xu N, Guo X P, et al. Inhibition effect of imidazoline inhibitor on the crevice corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 126: 127
doi: 10.1016/j.corsci.2017.06.021
8 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
9 Liu C D, Wu M, Zhao Z H, et al. Study on the inhibition effect of chromate on stress corrosion of 2024 aluminum alloy in NaCl solution [J]. Nonferrous Met. Eng., 2018, 8(1): 61
9 刘畅达, 吴 明, 赵志浩 等. 铬酸盐对2024铝合金在NaCl溶液中缓蚀机制的影响 [J]. 有色金属工程, 2018, 8(1): 61
10 Liu X H, Li Y Z, Lei L, et al. The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in the acidic NaCl solution [J]. Mater. Corros., 2021, 72: 1478
11 Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663
doi: 10.1016/j.corsci.2006.12.012
12 Li X H, Deng S D, Xie X G. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution [J]. Corros. Sci., 2014, 81: 162
doi: 10.1016/j.corsci.2013.12.021
13 Lai X, Hu J F, Ruan T, et al. Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid [J]. Carbohydr. Polym., 2021, 265: 118074
doi: 10.1016/j.carbpol.2021.118074
14 Du Y T, Wang H L, Chen Y R, et al. Synthesis of baicalin derivatives as eco-friendly green corrosion inhibitors for aluminum in hydrochloric acid solution [J]. J. Environ. Chem. Eng., 2017, 5: 5891
doi: 10.1016/j.jece.2017.11.004
15 Xu X T, Xu H W, Li W, et al. A combined quantum chemical, molcular dynamics and Monto Carlo study of three amino acids as corroison inhibitors for aluminum in NaCl solution [J]. J. Mol. Liq., 2022, 345: 117010
doi: 10.1016/j.molliq.2021.117010
16 Liu J, Wang D P, Gao L X, et al. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt. % NaCl solution [J]. Appl. Surf. Sci., 2016, 389: 369
doi: 10.1016/j.apsusc.2016.07.107
17 Blanc C, Gastaud S, Mankowski G. Mechanistic studies of the corrosion of 2024 aluminum alloy in nitrate solutions [J]. J. Electrochem. Soc., 2003, 150(8): B396
doi: 10.1149/1.1590327
18 Bai Y L, Shen G L, Qin Q Y. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 Pipeline Steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
18 白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护报, 2021, 41: 60
19 Moghadam Z, Shabani-Nooshabadi M, Behpour M. Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries [J]. J. Mol. Liq., 2017, 242: 971
doi: 10.1016/j.molliq.2017.07.119
20 Cui Z Y, Li X G, Man C, et al. Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere [J]. J. Mater. Eng. Perform., 2015, 24: 2885
doi: 10.1007/s11665-015-1571-5
21 Li S Y, Church B C. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution [J]. Appl. Surf. Sci., 2018, 440: 861
doi: 10.1016/j.apsusc.2018.01.108
22 McIntyre J F, Dow T S. Intergranular corrosion behavior of aluminum alloys exposed to artificial seawater in the presence of nitrate anion [J]. Corrosion, 1992, 48: 309
doi: 10.5006/1.3315937
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[3] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[6] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[7] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[8] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[9] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[10] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[11] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[12] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[13] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[14] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[15] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.