中国腐蚀与防护学报, 2023, 43(1): 62-68 DOI: 10.11902/1005.4537.2022.008

研究报告

质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能

刘云, 任延杰,, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱

长沙理工大学能源与动力工程学院 长沙 410114

Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC

LIU Yun, REN Yanjie,, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan

Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China

通讯作者: 任延杰,E-mail:yjren@csust.edu.cn,研究方向为动力设备的腐蚀与防护

收稿日期: 2022-01-06   修回日期: 2022-01-20  

基金资助: 国家自然科学基金.  51771034
湖南省自然科学基金.  2020JJ4610
长沙理工大学研究生科研创新项目.  CX2020SS65

Corresponding authors: REN Yanjie, E-mail:yjren@csust.edu.cn

Received: 2022-01-06   Revised: 2022-01-20  

Fund supported: National Natural Science Foundation of China.  51771034
Natural Science Foundation of Hunan Province.  2020JJ4610
Graduate Scientific Research Innovation Project of CSUST.  CX2020SS65

作者简介 About authors

刘云,女,1997年生,硕士生

摘要

采用直流磁控溅射技术在304不锈钢双极板表面沉积Cr2AlC MAX相涂层。利用扫描电镜 (SEM)、X射线衍射 (XRD)、X射线光电子能谱 (XPS) 等对涂层的形貌、微观组织进行分析;采用电化学方法研究了Cr2AlC涂层对不锈钢在0.01 mol/L H2SO4溶液中耐蚀性能的影响。结果表明:涂层致密均匀,主要由Cr2AlC MAX相组成;沉积Cr2AlC涂层后,304不锈钢的腐蚀电流密度为2.43×10-7 A·cm-2,下降了两个数量级;恒电位极化后,阳极和阴极的电流密度分别稳定在2.44×10-8和2.3×10-7 A·cm-2;在腐蚀介质中的电荷转移电阻值高于105 Ω·cm2,表明Cr2AlC涂层在质子交换膜燃料电池模拟环境中具有良好的耐腐蚀性能。

关键词: 质子交换膜燃料电池 ; Cr2AlC ; MAX相涂层 ; 金属双极板 ; 腐蚀性能

Abstract

In this paper, Cr2AlC phase coatings were deposited on 304 stainless steel bipolar plates by DC magnetron sputtering. The morphology and microstructure of the coating were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and its corrosion behavior in 0.01 mol/L H2SO4 solution was investigated by electrochemical methods. The results showed that the as-deposited Cr2AlC coating was compact and uniform, mainly composed of Cr2AlC phase. The corrosion current density of the coating was 2.43×10-7 A·cm-2, which was lower than that of 304 stainless steel by two orders of magnitude. After potentiostatic polarization at 600 and -240 mVSCE, the corresponding current densities were 2.44×10-8 and 2.3×10-7 A·cm-2, respectively. In addition, the impedance modulus of Cr2AlC coating in 0.01 mol/L H2SO4 solution was higher than 105 Ω·cm2, indicating that the coating could provide excellent protection for 304 stainless steel bipolar plate of PEMFC.

Keywords: PEMFC ; Cr2AlC coatings ; bipolar plate ; corrosion resistance ; stainless steel

PDF (8145KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能. 中国腐蚀与防护学报[J], 2023, 43(1): 62-68 DOI:10.11902/1005.4537.2022.008

LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(1): 62-68 DOI:10.11902/1005.4537.2022.008

质子交换膜燃料电池 (PEMFC) 是一种以氢气和氧气为燃料,通过化学反应直接转换为电能的能源转换装置,具有体积小、重量轻、能量转换率高、启动快等优点[1]。成本与寿命是制约PEMFC发展的关键因素。双极板是PEMFC的关键部件之一,起到集流导电、串联单个膜电极、去除残余水、便于热管理等作用[2]。石墨具有优异的导电性和化学稳定性,是目前PEMFC应用最多的极板材料。然而,其成本占整个燃料电池堆的40%、总重量的80%[3],且存在较脆、气密性差、强度低等缺点。

不锈钢 (如316L、304不锈钢等) 具有良好的导电性、化学稳定性,且成本较低,是双极板理想的候选材料[4]。然而,在PEMFC潮湿、酸性环境中易发生电化学腐蚀,不锈钢腐蚀产生的金属离子易于导致质子交换反应使膜电极组件 (MEA) 中毒。此外,不锈钢双极板表面形成的氧化物或钝化膜导致双极板与碳纸之间界面接触电阻 (ICR) 增加,从而降低输出功率[5,6]。对不锈钢双极板进行表面改性处理是解决上述问题的有效途径。目前的改性涂层主要包括导电聚合物涂层[7-10]、过渡金属陶瓷涂层[11,12]以及贵金属涂层[13-16]等。

三元层状化合物Mn+1AXn 材料具有金属导电性与陶瓷的抗腐蚀性能,同时其热力学稳定的纳米层状结构降低了脆性,具有良好的机械加工性能[17]。Lu等[18,19]研究表明,Ti3SiC2和Ti3AlC2 MAX相涂层在模拟PEMFC环境下具有良好的抗腐蚀性能和较低的接触电阻。到目前为止,三元Cr2AlC MAX相涂层应用于PEMFC双极板的研究相关的报道仍然较少。本论文采用直流磁控溅射技术在304不锈钢表面沉积Cr2AlC MAX相涂层,研究涂层的微观结构、物相组成和在模拟PEMFC环境中的腐蚀行为。

1 实验方法

采用TRP-450高真空多靶磁控溅射镀膜仪在304不锈钢 (ϕ20 mm×5 mm) 表面沉积Cr2AlC涂层。为提高涂层附着性,用砂纸将基体打磨至800目后采用丙酮和无水乙醇先后超声波清洗、吹干后备用。溅射靶材采用Cr、Al单元素靶 (99.99%)。溅射温度为480 ℃,氩气和乙炔的流量比为20∶1。沉积过程中的反应气体是总压力为0.5 Pa,真空度越低,更有利于维持辉光放电。Cr靶和Al靶的功率分别为60和30 W,偏压为60 V,溅射时间为3 h。

采用配备能量色散X射线 (EDX) 光谱附件的JSM-7900F型场发射扫描电子显微镜 (SEM) 表征涂层的腐蚀前后的表面形貌。采用D8 Advance X射线衍射仪 (XRD) 分析涂层物相组成,入射X射线采用Cu靶的Kα特征谱线,电压40 kV,电流40 mA,扫描角度范围为10°~90°,步长0.02°,扫描速度为1°/min。使用T Thermo Scientific K-Alpha+进行X射线光电子能谱 (XPS) 测试。

电化学测试在Zahner Zennium电化学工作站上进行,采用三电极体系,工作电极为测试样品,对电极为铂片,参比电极为饱和甘汞电极 (SCE),所有测试均在室温下进行。腐蚀介质为0.01 mol/L H2SO4溶液。测试前,所有样品均在电解质溶液中浸泡至稳定的开路电位。动电位极化电位扫描范围为-250~800 mVSCE,扫描速率为1 mV/s。在阴极 (600 mVSCE)、阳极 (-240 mVSCE) 进行恒电位极化测试。电化学阻抗谱频率测量范围为105~10-2 Hz,振幅为10 mV/s,测量在开路电位下进行。

2 结果与分析

2.1 涂层的微观结构

图1为304不锈钢双极板表面沉积的Cr2AlC MAX相涂层的表面和截面形貌。由图可见,涂层表面均匀致密,可观察到三元层状碳化物 (MAX相) 的典型层状结构[20]。根据EDS分析结果,涂层中Cr、Al和C原子的占比分别为46.1%、25.9%和19.5%,接近Cr2AlC化学计量比2∶1∶1。由于高真空处理期间残留的空气使得涂层中含有少量的O原子[21]。如图1c所示,涂层厚度约为1.1 μm,涂层无裂纹等微观缺陷。

图1

图1   304不锈钢表面Cr2AlC MAX相涂层的表面和截面形貌

Fig.1   Surface (a, b) and cross-sectional (c) morphologies of Cr2AlC coating deposited on 304 stainless steel


2.2 物相分析

图2为磁控溅射沉积的Cr2AlC涂层的XRD图谱。涂层主要由Cr2AlC MAX相和少量杂质相Cr2O3、Al2O3组成,这是由于溅射过程中Al、Cr原子被真空腔室残留氧气氧化所致。

图2

图2   304不锈钢表面Cr2AlC MAX相涂层的XRD图

Fig.2   XRD pattern of the Cr2AlC coating on 304 stainless steel


图3为Cr2AlC MAX相涂层C 1s、Cr 2p、Al 2p和O 1s高分辨率XPS能谱。如图3a所示,C 1s结合能为282.46 eV的峰对应于金属碳化物中的Cr-C键,而284.80 eV的峰主要归因于沉积过程中吸附的单质碳[22,23]图3b中O 1s中结合能为530.62 eV的峰对应金属氧化物[24,25],这在Al 2p轨道光谱 (74.39 eV) 和Cr 2p3/2 (576.93 eV) 轨道光谱中也有体现。在图3d的Al 2p光谱中,在72.19 eV处的结合能不仅小于Al4C3(73.4 eV),甚至小于金属Al (72.9 eV),相对于Al4C3的Al 2p结合能73.4 eV有1.4 eV的负位移,这是由于Cr2AlC相对于碳化铝来说含有更多Al-C键。Cr 2p轨道光谱中结合能为573.67 eV的峰接近但低于Cr7C3中Cr 2p2/3的结合能 (574.2 eV),一般认为是Cr2AlC中形成的Cr-C键[23]。因此,Cr 2p2/3和Al 2p在573.67和72.19 eV下的结合能以及光谱结合能的负位移证实了涂层主要由Cr2AlC MAX相组成[26-28]

图3

图3   304不锈钢表面Cr2AlC涂层的XPS光谱图

Fig.3   High-resolution XPS spectra of Cr2AlC coating deposited on 304 stainless steel: (a) C 1s, (b) O 1s, (c) Al 2p and (d) Cr 2p


2.3 电化学腐蚀行为

2.3.1 极化曲线

图4为未沉积和沉积Cr2AlC涂层的不锈钢在0.01 mol/L H2SO4中的动电位极化曲线。由图可知,304不锈钢在自腐蚀电位(-378 mVSCE) 下处于活化状态,随着电极电位升高进入钝化区。根据Tafel 公式计算,未沉积和沉积Cr2AlC涂层的不锈钢样品的腐蚀电流密度分别为1.46×10-5和2.43×10-7 A·cm-2。沉积Cr2AlC涂层后,不锈钢样品的腐蚀电流密度降低将近两个数量级,表明Cr2AlC涂层能够显著提高304不锈钢的耐腐蚀性能。

图4

图4   未沉积和沉积Cr2AlC涂层的304不锈钢样品在0.01 mol/L H2SO4中室温下的动电位极化曲线

Fig.4   Potentiodynamic polarization curves of 304 stainless steel without and with Cr2AlC coating in 0.01 mol/L H2SO4 solution


为探究PEMFC阴、阳两极工作电位对涂层性能的影响,分别在PEMFC阴极工作电位 (600 mVSCE) 和阳极工作电位 (-240 mVSCE) 下对沉积Cr2AlC涂层的不锈钢进行恒电位极化 (如图5所示)。随着极化的进行,阴极电流密度迅速下降至2.3×10-7 A·cm-2,阳极电流密度最终稳定在2.44×10-8 A·cm-2。沉积Cr2AlC涂层的不锈钢在阴、阳极电位下恒电位极化4 h后的微观形貌如图6所示。涂层无明显的变化,表明沉积Cr2AlC涂层的不锈钢在PEMFC工作电位下有着较好的稳定性。

图5

图5   沉积Cr2AlC涂层的304不锈钢样品在模拟PEMFC阳极和阴极环境中的恒电位极化曲线

Fig.5   Potentiostatic polarization curves of 304 stainless steel with Cr2AlC coating at -240 mVSCE and 600 mVSCE


图6

图6   沉积Cr2AlC涂层的304不锈钢在-240 mVSCE和600 mVSCE恒电位极化后的表面形貌

Fig.6   SEM surface images of Cr2AlC coated 304 stainless steel after potentiostatical polarization at -240 mVSCE (a) and 600 mVSCE (b) in 0.01 mol/L H2SO4 solution at room temperature


2.3.2 开路电位-时间曲线

图7为未沉积和沉积Cr2AlC涂层的304不锈钢样品的开路电位-时间曲线。在腐蚀过程中,304不锈钢的开路电位由-558 mVSCE增加到-460 mVSCE后趋于稳定,表明不锈钢已达到稳定的腐蚀状态。沉积Cr2AlC涂层的不锈钢样品浸泡初期,腐蚀电位由-335 mVSCE升至82 mVSCE后一直保持稳定,表明在腐蚀过程中涂层保持着良好的防护性能。

图7

图7   未沉积和沉积Cr2AlC涂层的304不锈钢样品在0.01 mol/L H2SO4溶液中的开路电位-时间曲线

Fig.7   Open circuit potential-time curves for 304 stainless steel without and with Cr2AlC coating in 0.01 mol/L H2SO4 solution


2.3.3 电化学阻抗谱

图8a,b为304不锈钢在0.01 mol/L H2SO4溶液中腐蚀的电化学阻抗谱。阻抗谱由单一的容抗弧组成。在腐蚀过程中,容抗弧半径逐渐减小,表明表面形成的腐蚀产物层逐渐溶解。腐蚀96 h后基体表面有肉眼可见的腐蚀坑。图8d,e为沉积Cr2AlC涂层的不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱。由图8d可知,沉积Cr2AlC涂层的不锈钢样品阻抗谱由两个不易区分的容抗弧组成。腐蚀过程中阻抗谱保持着相同的特征。低频段的阻抗模值高于105 Ω·cm2,表现出优异的抗腐蚀性。Bode图的高频区域表示溶液与电极之间的电阻,中频区代表涂层本身的信息,低频区域代表的是基体合金的腐蚀反应[4,29-32]。由图8e的 Bode图可见,在中低频端 (<100 Hz),lg|Z|与lgf几乎为线性关系,且幅角接近80°。这是由于涂层致密,在腐蚀过程中介质未扩散至不锈钢表面,表现近纯容抗特征。

图8

图8   未沉积及沉积Cr2AlC涂层的304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱及其等效电路

Fig.8   Nyquist (a, d) and Bode (b, e) plots of 304 stainless steel (a, b) Cr2AlC coated 304 stainless steel (c, d) after immersion in 0.01 mol/L H2SO4 solution for different time, equivalent circuits for fitting impedance diagrams of 304 stainless steel without (c) and with (f) Cr2AlC coating in 0.01 mol/L H2SO4 solution (symbol: experimental data; line: fitted data)


采用图8c,f所示的等效电路分别对未沉积和沉积Cr2AlC涂层的304不锈钢阻抗谱进行拟合。其中,Rs为溶液电阻,RctRf分别为电荷转移电阻和涂层电阻。CfCdl分别为涂层电容和双层电容。考虑到弥散效应,采用恒相位角原件CPE (Q) 代替纯电容C,其表达式为 (1):

ZCPE=1Y0(jω)-n

其中,Y0n为表征CPE的常数;n为弥散系数,表示与纯电容的偏离,n值越小所对应的反映界面的不均匀性越高,与界面电容有关,当体系表现为纯电容时n=1。304不锈钢和Cr2AlC涂层的电化学阻抗谱拟合结果如表12所示。

表1   304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱拟合结果

Table 1  Fitting results of EIS of bare 304 stainless steel in 0.01 mol/L H2SO4 solution at room temperature

Time / hRs / Ω·cm2CPE1Rct / Ω·cm2
Ydl / S Ω-1 cm-2n
239.621.053×10-30.877195.7
842.191.869×10-30.893126.9
4847.458.892×10-30.96376.33
9669.762.118×10-20.91171.48

新窗口打开| 下载CSV


表2   沉积Cr2AlC涂层的304不锈钢在0.01 mol/L H2SO4溶液中的电化学阻抗谱拟合结果

Table 2  Fitting results of EIS of Cr2AlC coated 304 stainless steel in 0.01 mol/L H2SO4 solution at room temperature

Time / hRs / Ω·cm2CPE1Rct / Ω·cm2CPE2Rf / Ω·cm2
Ydl / S Ω-1 cm-2ndlYf / S Ω-1 cm-2nf
2106.01.604×10-50.6764.228×1055.565×1050.9391.900×105
8152.81.116×10-50.6736.316×1056.675×1050.9422.799×105
48141.13.687×10-50.8721.841×1065.141×1050.98559.27
96165.03.299×10-50.8802.600×1065.984×1050.975100.50
264130.84.116×10-50.9361.122×1068.114×1050.96085.28
432131.47.643×10-50.9422.877×1055.363×1050.94741.01

新窗口打开| 下载CSV


随着腐蚀时间的延长,304不锈钢的电荷转移电阻Rct逐渐减小 (如表1所示)。由表2可知,随着腐蚀时间延长,涂层电阻Rf明显下降,主要是由于溶液扩散进入涂层内部,涂层的导电性能增加。沉积Cr2AlC涂层的不锈钢的Rct在腐蚀432 h后仍然保持者较高的阻抗值 (2.877×105 Ω·cm2),比不锈钢提高了4个数量级以上。n值在0.94~0.97之间变化,涂层表面未发生明显的改变。图9为沉积Cr2AlC涂层的不锈钢腐蚀432 h后的表面形貌。涂层表面完整,未出现起泡或者剥离现象,表明该涂层能够显著地提高304不锈钢双极板的抗腐蚀性能[33]

图9

图9   沉积Cr2AlC涂层的不锈钢在0.01 mol/L H2SO4溶液中腐蚀432 h后的表面形貌

Fig.9   Surface morphology of Cr2AlC coated 304 stainless steel after immersion for 432 h in 0.01 mol/L H2SO4 solution


3 结论

(1) 利用直流磁控溅射技术在基体温度480 ℃的304不锈钢表面成功制备了Cr2AlC MAX相涂层。涂层表面均匀致密,主要由Cr2AlC MAX相和少量金属氧化物组成。

(2) 在0.01 mol/L 的H2SO4中,沉积Cr2AlC涂层的304不锈钢腐蚀电流密度为1.46×10-5 A·cm-2,比304不锈钢下降了两个数量级。在600和-240 mVSCE的阴阳极恒电位极化后的腐蚀电流密度分别为2.3×10-7和2.44×10-8 A·cm-2。与304不锈钢相比,沉积Cr2AlC涂层的304不锈钢Rct值提高了4个数量级以上,表明Cr2AlC涂层显著提高了304不锈钢双极板的耐蚀性。

参考文献

Yi P Y, Zhang D, Qiu D K, et al.

Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells

[J]. Int. J. Hydrogen Energy, 2019, 44: 6813

DOI      URL     [本文引用: 1]

Tan Q Y, Wang Y L.

Research progress on corrosion behavior and surface protection of stainless steel bipolar plate of proton exchange membrane fuel cell

[J]. Surf. Technol., 2021, 50(8): 192

[本文引用: 1]

谭茜匀, 王艳丽.

质子交换膜燃料电池不锈钢双极板的腐蚀行为及其表面防护的研究进展

[J]. 表面技术, 2021, 50(8): 192

[本文引用: 1]

Lee S H, Woo S P, Kakati N, et al.

Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates

[J]. Surf. Coat. Technol., 2016, 303: 162

DOI      URL     [本文引用: 1]

Jin J, Liu H J, Zheng D C, et al.

Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment

[J]. Int. J. Hydrogen Energy, 2018, 43: 10048

DOI      URL     [本文引用: 2]

Han Y T, Zhang P C, Shi J F, et al.

Surface modification of TA1 bipolar plate for proton exchange membrane fuel cell

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 125

[本文引用: 1]

韩月桐, 张鹏超, 史杰夫 .

质子交换膜燃料电池中TA1双极板的表面改性研究

[J]. 中国腐蚀与防护学报, 2021, 41: 125

[本文引用: 1]

Lv J L, Liang T X, Wang C.

Comparison of corrosion behavior between coarse grained and nanocrystalline Ni-Fe alloys in chloride solutions and proton exchange membrane fuel cell environment by EIS, XPS and Raman spectra techniques

[J]. Energy, 2016, 112: 67

DOI      URL     [本文引用: 1]

Joseph S, McClure J C, Chianelli R, et al.

Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC)

[J]. Int. J. Hydrogen Energy, 2005, 30: 1339

DOI      URL     [本文引用: 1]

Lucio García M A, Smit M A.

Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell

[J]. J. Power Sources, 2006, 158: 397

DOI      URL    

Chen Z H, Zhang G H, Yang W Z, et al.

Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells

[J]. Chem. Eng. J., 2020, 393: 124675

DOI      URL    

Ren Y J, Zeng C L.

Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells

[J]. J. Power Sources, 2008, 182: 524

DOI      URL     [本文引用: 1]

Bertrand G, Mahdjoub H, Meunier C.

A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings

[J]. Surf. Coat. Technol., 2000, 126: 199

DOI      URL     [本文引用: 1]

Wang Y, Northwood D O.

An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells

[J]. J. Power Sources, 2007, 165: 293

DOI      URL     [本文引用: 1]

Zhang K, Sharma S.

Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells

[J]. ACS Sustainable Chem. Eng., 2017, 5: 277

DOI      URL     [本文引用: 1]

Feng K, Li Z G, Cai X, et al.

Silver implanted 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells

[J]. Mater. Chem. Phys., 2011, 126: 6

DOI      URL    

Wind J, Späh R, Kaiser W, et al.

Metallic bipolar plates for PEM fuel cells

[J]. J. Power Sources, 2002, 105: 256

DOI      URL    

Hentall P L, Lakeman J B, Mepsted G O, et al.

New materials for polymer electrolyte membrane fuel cell current collectors

[J]. J. Power Sources, 1999, 80: 235

DOI      URL     [本文引用: 1]

Walter C, Sigumonrong D P, El-Raghy T, et al.

Towards large area deposition of Cr2AlC on steel

[J]. Thin Solid Films, 2006, 515: 389

DOI      URL     [本文引用: 1]

Lu J L, Abbas N, Tang J N, et al.

Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments

[J]. Corros. Sci., 2019, 158: 108106

DOI      URL     [本文引用: 1]

Lu J L, Abbas N, Tang J N, et al.

Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments

[J]. Electrochem. Commun., 2019, 105: 106490

DOI      URL     [本文引用: 1]

Li J J, Hu L F, Li F Z, et al.

Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500 ℃

[J]. Surf. Coat. Technol., 2010, 204: 3838

DOI      URL     [本文引用: 1]

Abdulkadhim A, to Baben M, Takahashi T, et al.

Crystallization kinetics of amorphous Cr2AlC thin films

[J]. Surf. Coat. Technol., 2011, 206: 599

DOI      URL     [本文引用: 1]

Sharma P, Pandey O P.

Non-isothermal oxidation kinetics of nano-laminated Cr2AlC MAX phase

[J]. J. Alloy. Compd., 2019, 773: 872

DOI      [本文引用: 1]

A highly pure Cr2AlC MAX phase is prepared through the sintering method by varying the aluminum content. The non-isothermal oxidation kinetics of the Cr2AlC phase is examined through a TGA/DTA technique, at variable heating rates (10, 20, 30, 40 degrees C/min). The TGA/DTA results show that the oxidation of the Cr2AlC phase occurred in two stages. The multi-stage kinetic analysis is performed to establish the nature of the oxidation process. The activation energy is calculated by following the Kissinger-Akahira-Sunose (KAS) and the Friedman (FR) iso-conversional kinetic methods. The reaction mechanism involved during the oxidation process is proposed through the integral master-plots method. (C) 2018 Elsevier B.V.

Vyas A, Shen Y G, Zhou Z F, et al.

Nano-structured CrN/CN x multilayer films deposited by magnetron sputtering

[J]. Compos. Sci. Technol., 2008, 68: 2922

DOI      URL     [本文引用: 2]

Zhang Z, Lim S H, Chai J W, et al.

Plasma spray of Ti2AlC MAX phase powders: effects of process parameters on coatings' properties

[J]. Surf. Coat. Technol., 2017, 325: 429

DOI      URL     [本文引用: 1]

Li G, Xia L F.

Structural characterization of TiC x films prepared by plasma based ion implantation

[J]. Thin Solid Films, 2001, 396: 16

DOI      URL     [本文引用: 1]

Zhang Z, Nie Y G, Shen L, et al.

Charge distribution in the single crystalline Ti2AlN thin films grown on MgO (111) substrates

[J]. J. Phys. Chem. C, 2013, 117: 11656

DOI      URL     [本文引用: 1]

Zhang Z, Jin H M, Chai J W, et al.

Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering

[J]. Appl. Surf. Sci., 2016, 368: 88

DOI      URL    

Healy M D, Smith D C, Rubiano R R, et al.

Use of tetraneopentylchromium as a precursor for the organometallic chemical vapor deposition of chromium carbide: a Reinvestigation

[J]. Chem. Mater., 1994, 6: 448

DOI      URL     [本文引用: 1]

Mani S P, Kalaiarasan M, Ravichandran K, et al.

Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell

[J]. J. Mater. Sci., 2021, 56: 10575

DOI      URL     [本文引用: 1]

Wang Y L, Tan Q Y, Huang B.

Synthesis and properties of novel N/Ta-co-doped TiO2 coating on titanium in simulated PEMFC environment

[J]. J. Alloy. Compd., 2021, 879: 160470

DOI      URL    

Jin J, He Z, Zhao X H.

Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs

[J]. Mater. Chem. Phys., 2020, 245: 122739

DOI      URL    

Pugal Mani S, Rajendran N.

Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells

[J]. Energy, 2017, 133: 1050

DOI      URL     [本文引用: 1]

Ren Y J, Anisur M R, Qiu W, et al.

Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: electrochemical impedance spectroscopy study

[J]. J. Power Sources, 2017, 362: 366

DOI      URL     [本文引用: 1]

/