Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 55-61     CSTR: 32134.14.1005.4537.2022.040      DOI: 10.11902/1005.4537.2022.040
  研究报告 本期目录 | 过刊浏览 |
镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为
杨依凡, 孙文瑶(), 陈明辉(), 王金龙, 王福会
东北大学 沈阳材料科学国家研究中心东北大学联合分部 沈阳 110819
Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment
YANG Yifan, SUN Wenyao(), CHEN Minghui(), WANG Jinlong, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(8855 KB)   HTML
摘要: 

以镍基单晶高温合金N5为基体,采用磁控溅射技术在基体表面沉积与其成分相同的纳米晶涂层,并对比研究合金及其纳米晶涂层在900 ℃下O2和O2+20% (体积分数) H2O气氛中的氧化行为。结果表明,水蒸气加快了合金和涂层的氧化速率,促进合金表面氧化膜的剥落,并且影响了氧化膜的组成和结构。在O2和O2+H2O环境中,合金表面氧化膜都由外层NiO、中间层NiAl2O4和内层Al2O3组成;但在O2+H2O环境中,合金氧化速率较大,外层氧化膜发生剥落。纳米晶涂层显著提高了合金的抗高温氧化性能,在O2气氛中表面形成Al2O3,而在O2+H2O气氛中表面氧化膜主要为NiAl2O4。同时,纳米晶涂层表面氧化膜未发生开裂和剥落,起到良好的保护作用。

关键词 镍基单晶高温合金纳米晶涂层高温氧化水蒸气磁控溅射    
Abstract

The nanocrystalline coatings of superalloy N5 were deposited on the surface of nickel-based single-crystal superalloy N5 by magnetron sputtering. The oxidation behavior of the single-crystal alloy and its nanocrystalline coating in environments of O2 and O2+20%H2O at 900 ℃ was investigated, respectively. The results show that the water vapor accelerates the oxidation rate of the bare alloy and the coating, while promotes very specially the spallation, and affects the composition and structure of the oxide scales formed on the bare alloy. Correspondingly, the formed oxide scales composed of an outer layer NiO, a middle layer NiAl2O4 and an inner layer Al2O3 for the bare alloy being oxidized in environments of O2 and O2+H2O respectively, meanwhile, the oxidation rate is higher, and the spallation of outer oxide scale dose emerge for the oxidation in O2+H2O environment. The nanocrystalline coating significantly can enhance the high temperature oxidation resistance of the coated alloy. After oxidation in O2, Al2O3 is formed on the surface of the coating, while in O2+H2O environment, the formed oxide scale is NiAl2O4. Meanwhile, no cracks and spalling were found on the surface of oxide scale, which played a good protective role.

Key wordsNi-based single-crystal superalloy    nanocrystalline coatings    high-temperature oxidation    water vapor    magnetron sputtering
收稿日期: 2022-02-14      32134.14.1005.4537.2022.040
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51871051);工业和信息技术部项目(MJ-2017-J-99)
作者简介: 杨依凡,女,1997年生,硕士生

引用本文:

杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
Yifan YANG, Wenyao SUN, Minghui CHEN, Jinlong WANG, Fuhui WANG. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 55-61.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.040      或      https://www.jcscp.org/CN/Y2023/V43/I1/55

图1  合金经FeCl3溶液刻蚀后的表面背散射形貌和面扫图
图2  溅射纳米晶涂层的表面和截面形貌
图3  N5及其纳米晶涂层在900 ℃下O2和O2+H2O气氛中氧化100 h的动力学曲线
图4  N5及其纳米晶涂层在900 ℃下O2和O2+H2O气氛中氧化100 h后表面的X射线衍射图谱
图5  N5合金在900 ℃下O2中氧化100 h后的表面微观形貌及EDS分析
图6  N5合金在900 ℃ O2+H2O气氛中氧化100 h后的表面微观形貌及EDS分析
图7  N5合金在900 ℃下O2和O2+H2O气氛中氧化100 h后的截面微观形貌图
PointNiAlTa
113.34---21.33
216.7923.531.42
324.4914.750.83
451.307.000.40
526.6823.721.43
616.9615.661.78
745.020.520.56
表1  图7中1~7点EDS分析
图8  纳米晶涂层在900 ℃下O2和O2+H2O气氛中氧化100 h后的表面和界面形貌图
1 Wu Y, Narita T. Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor [J]. Surf. Coat. Technol., 2007, 202: 140
doi: 10.1016/j.surfcoat.2007.05.018
2 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
3 Wang X Y, Xin L, Wang F H, et al. Influence of sputtered nanocrystalline coating on oxidation and hot corrosion of a nickel-based superalloy M951 [J]. J. Mater. Sci. Technol., 2014, 30: 867
doi: 10.1016/j.jmst.2014.01.001
4 Qiu P P, Shu X Y, Hu L L, et al. Research progress of Pt-modified aluminide coating on Nickel-base superalloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 186
4 邱盼盼, 舒小勇, 胡林丽 等. Pt改性镍基高温合金铝化物涂层研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 186
5 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
doi: 10.1016/j.pmatsci.2007.11.001
6 Zhu D D, Wang X L, Zhao J, et al. Effect of water vapor on high-temperature oxidation of NiAl alloy [J]. Corros. Sci., 2020, 177: 108963
doi: 10.1016/j.corsci.2020.108963
7 Yan K, Guo H B, Gong S K. High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres [J]. Corros. Sci., 2013, 75: 337
doi: 10.1016/j.corsci.2013.06.017
8 Chandra-Ambhorn S, Saranyachot P, Thublaor T. High temperature oxidation behaviour of Fe-15.7 wt.% Cr-8.5wt.%Mn in oxygen without and with water vapour at 700 ℃ [J]. Corros. Sci., 2019, 148: 39
doi: 10.1016/j.corsci.2018.11.023
9 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
9 曹京宜, 方志刚, 李亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
10 Liu Y C, Zhong X K, Hu J Y. Characteristics and mechanisms of elemental sulfur induced corrosion of sulfur-resistant steels in wet flow CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 369
10 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理 [J]. 中国腐蚀与防护学报, 2022, 42: 369
11 Zhao W, Gleeson B. Assessment of the detrimental effects of steam on Al2O3-scale establishment [J]. Oxid. Met., 2015, 83: 607
doi: 10.1007/s11085-015-9541-8
12 Wollgarten K, Galiullin T, Nowak W J, et al. Effect of alloying additions and presence of water vapour on short-term air oxidation behaviour of cast Ni-base superalloys [J]. Corros. Sci., 2020, 173: 108774
doi: 10.1016/j.corsci.2020.108774
13 Maris-Sida M C, Meier G H, Pettit F S. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers [J]. Metall. Mater. Trans., 2003, 34A: 2609
14 Wang J L, Chen M H, Zhu S L, et al. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100 ℃ [J]. Appl. Surf. Sci., 2015, 345: 194
doi: 10.1016/j.apsusc.2015.03.157
15 Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000 ℃ [J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
16 Yang S S, Wang Y Q, Chen M H, et al. Oxidation behavior of Al/Y co-modified nanocrystalline coatings with different Al content on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2020, 170: 108700
doi: 10.1016/j.corsci.2020.108700
17 Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
doi: 10.1016/S1359-6454(97)00346-7
18 Geng S J, Wang F H, Zhang S. Cross-sectional oxide distribution of cast IN738 and its sputtered coating at 1000 ℃ [J]. Surf. Coat. Technol., 2003, 167: 161
doi: 10.1016/S0257-8972(02)00909-X
19 Wang F, Tian X, Li Q, et al. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52 [J]. Thin Solid Films, 2008, 516: 5740
doi: 10.1016/j.tsf.2007.07.131
20 Cheruvu N S, Wei R, Gandy D W. Influence of thermal exposure on the stability of metastable microstructures of sputter deposited nanocrystalline 304 and 310 stainless steel coatings [J]. Surf. Coat. Technol., 2010, 205: 1211
doi: 10.1016/j.surfcoat.2010.10.035
21 Yang L L, Wang J L, Yang R Z, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature [J]. Corros. Sci., 2021, 180: 109182
doi: 10.1016/j.corsci.2020.109182
22 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
23 Yang L L, Chen M H, Wang J L, et al. Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents [J]. Corros. Sci., 2017, 126: 344
doi: 10.1016/j.corsci.2017.07.017
24 Lou H Y, Chen G F. High temperature oxidation behavior of nanocrystalline Ni-Cr-Al super alloys [J]. Corros. Sci. Prot. Technol., 2003, 15: 147
24 楼翰一, 陈国锋. Ni-Cr-Al纳米晶合金在1000 ℃的高温氧化行为 [J]. 腐蚀科学与防护技术, 2003, 15: 147
25 Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2015, 98: 530
doi: 10.1016/j.corsci.2015.05.062
26 Shi L, Xin L, Wang F H, et al. Influences of nanocrystalline coating on hot corrosion behavior of DD98M alloy [J]. China Surf. Eng., 2017, 30(5): 1
26 时龙, 辛丽, 王福会 等. 纳米晶涂层对DD98M合金热腐蚀行为的影响 [J]. 中国表面工程, 2017, 30(5): 1
27 Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Zeit. Elektrochem. Berichte Buns. Phys. Chem., 1959, 63:772
28 Tomozawa M. Water diffusion in silica glass and wet oxidation of Si: an interpretation for the high speed of wet oxidation [J]. J. Electrochem. Soc., 2011, 158: G115
doi: 10.1149/1.3560037
29 Åkermark T, Hultquist G. Oxygen exchange in oxidation of an Fe-20Cr-10Al alloy in ~10 mbar O2/H2O-gas mixtures at 920 ℃ [J]. Oxid. Met., 1997, 47: 117
doi: 10.1007/BF01682374
30 Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17: 231
doi: 10.1179/mht.2000.17.2.008
31 Zhang Y, Pint B A, Haynes J A, et al. The effect of water vapor on the oxidation behavior of CVD iron-aluminide coatings [J]. Oxid. Met., 2004, 62: 103
doi: 10.1023/B:OXID.0000038788.02094.cb
[1] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[3] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[4] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[5] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[6] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[7] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[10] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[11] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[12] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[13] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[14] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[15] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.