Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 324-330    DOI: 10.11902/1005.4537.2021.054
  研究报告 本期目录 | 过刊浏览 |
多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响
李旭嘉1, 惠红海2, 赵君文1(), 巫国强1, 戴光泽1
1.西南交通大学材料科学与工程学院 成都 610031
2.中国石油天然气长庆油田分公司第五采油厂 西安 710000
Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings
LI Xujia1, HUI Honghai2, ZHAO Junwen1(), WU Guoqiang1, DAI Guangze1
1.School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.The No. 5 Oil Production Plant, PetroChina Changqing Oil Field Company, Xi'an 710000, China
全文: PDF(20318 KB)   HTML
摘要: 

针对无铬锌铝涂层耐蚀性不足的问题,通过超声波分散的方法制备了不同多壁碳纳米管 (MWCNTs) 含量的无铬锌铝涂层,研究了MWCNTs含量对无铬锌铝涂层宏观及微观形貌、成分、结合力及耐蚀性能的影响。结果表明:添加MWCNTs质量分数为0%~0.7%时,所有涂层外观均完整平滑,连续致密。MWCNTs含量为0.3%时,在涂层中分散良好,涂层结合力最佳,耐NaCl溶液腐蚀性能最好,且可以为基体提供良好的阴极保护作用,其自腐蚀电流密度仅为2.019×10-5 A/cm2,阻抗模量较未加MWCNTs的涂层大一个数量级。此外,对MWCNTs影响涂层耐蚀性的机理也进行了分析。

关键词 碳纳米管无铬锌铝涂层极化曲线阻抗谱耐蚀性机理    
Abstract

Novel chromium-free zinc-aluminum coatings with different content of multi-walled carbon nanotubes (MWCNTs) were prepared by ultrasonic dispersion method. The effect of MWCNTs on the morphology, composition, adhesion and corrosion resistance of chromium-free zinc aluminum coatings were investigated by means of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) and adhesion tester as well as immersion test in 3.5%NaCl solution with electrochemical impedance spectroscopy and polarization curve measurement. Results show that when the MWCNTs content was 0%~0.7%, the coatings were smooth flat and dense, the flaky zinc powders and aluminum powders were parallel to the substrate, providing a good physical shielding. When the MWCNTs content was 0.3%, the coating had the best adhesion and showed the best corrosion resistance in NaCl solution, its free-corrosion current was 2.019×10-5 A/cm2, and impedance modulus reached 103 Ω·cm2. In addition, the mechanism of MWCNTs affecting the corrosion resistance of the coating was explored.

Key wordsMWCNTs    chromium-free zinc-aluminum coating    polarization curve    impedance spectroscopy    corrosion resistance    mechanism
收稿日期: 2021-03-17     
ZTFLH:  TG174.4  
基金资助:汽车高性能材料及成形技术四川省高校重点实验室开放项目(szjj2017-019)
通讯作者: 赵君文     E-mail: swjtuzjw@swjtu.cn
Corresponding author: ZHAO Junwen     E-mail: swjtuzjw@swjtu.cn
作者简介: 李旭嘉,女,1996年生,硕士生

引用本文:

李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
Xujia LI, Honghai HUI, Junwen ZHAO, Guoqiang WU, Guangze DAI. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 324-330.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.054      或      https://www.jcscp.org/CN/Y2022/V42/I2/324

CompositionKH560ZnAlTween20MWCNTsDeionized waterAdditives
A5.17.51.25------212.5
B---------0.750~0.2643.6
Content / %13.419.63.220~0.715.742.2
表1  A、B组分的组成 (g)
图1  多壁碳纳米管含量不同的改性涂层的宏观形貌
图2  多壁碳纳米管含量不同涂层的表面SEM图
图3  多壁碳纳米管含量不同涂层的截面SEM图
图4  未含和含0.3%MWCNTs涂层的微区SEM图及其EDS分析
图5  多壁碳纳米管含量不同涂层结合力的划格法测试
图6  不同多壁碳纳米管含量对应涂层浸泡前后形貌
图7  多壁碳纳米管含量不同涂层预制损伤并经浸泡后的表面形貌
图8  多壁碳纳米管含量不同涂层的极化曲线
Content / %Icorr / A·cm-2Ecorr / V
02.072×10-4-1.281
0.15.784×10-5-1.171
0.32.019×10-5-1.232
0.51.141×10-4-1.329
0.71.176×10-4-1.340
Q235----0.935
表2  多壁碳纳米管含量不同涂层的Icorr与Ecorr
图9  多壁碳纳米管含量不同涂层的阻抗谱及其等效电路
Content %RsΩ·cm2QcF·cm-2n1RcΩ·cm2QfF·cm-2n2RfΩ·cm2
03.792.944×10-50.6628.261.80×10-30.60503.3
0.13.275.695×10-50.5674.542.60×10-30.571059
0.33.168.655×10-50.48199.51.95×10-30.532356
0.53.633.408×10-30.6564.041.62×10-30.52565.8
0.73.542.628×10-50.6060.712.87×10-30.64576.3
表3  不同多壁碳纳米管含量对应涂层的电化学阻抗谱拟合参数
图10  多壁碳纳米管增强无铬锌铝涂层耐蚀性能的机理
1 Luca F A, Ciobanu C I, Andrei A G, et al. Raising awareness on health impact of the chemicals used in consumer products: Empirical evidence from east-central Europe [J]. Sustainability, 2018, 10: 209
2 Xu Y, Teng Y, Xu M X. Study on silane agents and its new application for metal surface treatment [J]. Surf. Technol., 2001, 30(3): 48
2 徐溢, 滕毅, 徐铭熙. 硅烷偶联剂应用现状及金属表面处理新应用 [J]. 表面技术, 2001, 30(3): 48
3 Gou J F, Wang G, Ning Y L, et al. Preparation and corrosion resistance of chromium-free Zn-Al coatings with two different silane coupling agents [J]. Surf. Coat. Technol., 2019, 366: 1
4 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
4 师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
5 Zhang K B, Zhang M M, Qiao J F, et al. Enhancement of the corrosion resistance of zinc-aluminum-chromium coating with cerium nitrate [J]. J. Alloy. Compd., 2017, 692: 460
6 Hu H L, Li N, Zhu Y M. Effect of chromate on the electrochemical behavior of sintered Zn-Al coating in seawater [J]. Surf. Coat. Technol., 2008, 202: 5847
7 Li X W, Gu Y, Shi T, et al. Preparation of the multi-walled carbon nanotubes/nickel composite coating with superior wear and corrosion resistance [J]. J. Mater. Eng. Perform., 2015, 24: 4656
8 Li H, He Y, Fan Y, et al. Pulse electrodeposition and corrosion behavior of Ni-W/MWCNT nanocomposite coatings [J]. RSC Adv., 2015, 5(84): 68890
9 Lee K M, Ko Y G, Shin D H. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties [J]. Curr. Appl. Phys., 2011, 11(suppl.): S55
10 He L F, Guo Z C. Application study on water-borne inorganic zinc-rich coating [J]. Surf. Technol., 2006, 35(1): 55
10 何丽芳, 郭忠诚. 水性无机富锌涂料的应用研究 [J]. 表面技术, 2006, 35(1): 55
11 Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 16
11 范同祥, 刘悦, 杨昆明等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展 [J]. 金属学报, 2019, 55: 16
12 Ding R, Wang X, Jiang J M, et al. Study on evolution of coating state and role of graphene in graphene-modified low-zinc waterborne epoxy anticorrosion coating by electrochemical impedance spectroscopy [J]. J. Mater. Eng. Perform., 2017, 26: 3319
13 Xie D M, Huang K, Feng X, et al. Improving the performance of zinc-rich coatings using conductive pigments and silane [J]. Corros. Eng. Sci. Technol., 2020, 55: 539
14 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
15 Ramezanzadeh B, Arman S Y, Mehdipour M. Anticorrosion properties of an epoxy zinc-rich composite coating reinforced with zinc, aluminum, and iron oxide pigments [J]. J. Coat. Technol. Res., 2014, 11: 727
16 Wang T Y, Dong R Y, Xu S, et al. Electrochemical properties of graphene modified mixed metal oxide anodes of Ti/IrTaSnSb-G in NaCl solutions at low temperature [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 289
16 王廷勇, 董如意, 许实等. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能 [J]. 中国腐蚀与防护学报, 2020, 40: 289
17 Deyab M A, Keera S T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating [J]. Mater. Chem. Phys., 2014, 146: 406
18 Deyab M A. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell [J]. J. Power Sources, 2014, 268: 50
19 Hayatdavoudi H, Rahsepar M. A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate [J]. J. Alloy. Compd., 2017, 727: 1148
20 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
20 栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
21 Huang S Y, Kong G, Yang B, et al. Effects of graphene on the corrosion evolution of zinc particles in waterborne epoxy zinc-containing coatings [J]. Prog. Org. Coat., 2020, 140: 105531
[1] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[2] 代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[3] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[4] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[5] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[6] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[7] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[8] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[9] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[10] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[11] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[12] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[13] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[14] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[15] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.