Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 301-308    DOI: 10.11902/1005.4537.2021.088
  研究报告 本期目录 | 过刊浏览 |
AM60镁合金超疏水表面制备及防腐蚀性能的研究
代卫丽1,2(), 王景行1, 罗帅1, 杜宁1, 刘凡1, 胥立栋1, 张俊1, 宋月红1,2, 刘彦峰1,2,3
1.商洛学院 陕西省尾矿资源综合利用重点实验室 商洛 726000
2.商洛学院 陕西省矿产资源清洁高效转化与新材料工程研究中心 商洛 726000
3.西安理工大学材料科学与工程学院 西安 710048
Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance
DAI Weili1,2(), WANG Jinghang1, LUO Shuai1, DU Ning1, LIU Fan1, XU Lidong1, ZHANG Jun1, SONG Yuehong1,2, LIU Yanfeng1,2,3
1.Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
2.Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo University, Shangluo 726000, China
3.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(9884 KB)   HTML
摘要: 

通过化学刻蚀,以硬脂酸为修饰剂,成功实现AM60镁合金表面的超疏水改性,并采用扫描电镜、接触角仪、电化学工作站等对处理前后的AM60镁合金表面的微观形貌、疏水性能和耐腐蚀性能进行分析。结果表明:AM60镁合金仅经盐酸刻蚀处理后,表现为超亲水性,再经硬脂酸浸泡后才达到疏水的效果;随着硬脂酸浸泡时间的增加,该合金的表面接触角呈现先增加后减小的趋势,在浸泡12 h时,接触角最大为150.18°,滚动角小于10°,此时合金表面具有超疏水性能;同时,相比于未处理的AM60镁合金而言,超疏水改性后样品的腐蚀电流密度降低了88.19%,腐蚀电压提高了19.72%,耐腐蚀性能得到明显改善;而且,超疏水改性还可提高合金对粉尘和水溶液的自清洁性能。

关键词 AM60镁合金化学刻蚀疏水性耐蚀性自清洁    
Abstract

The hydrophobic surface film on AM60 Mg-alloy was prepared by chemical etching, and then soaking in stearic acid ethanol solution. The microstructure, hydrophobic properties and corrosion resistance of hydrophobic surface were characterized by means of scanning electron microscope, contact angle tester and electrochemical workstation. The results showed that the AM60 Mg-alloy was super hydrophilic after etching with hydrochloric acid. When the etching time was 25 min, the contact angle reached a maximum value, which was 125% higher than that of the untreated surface. With the increase of soaking time in the stearic acid ethanol solution, the contact angle increases first and then decreases. When soaked for 12 h, the contact angle reaches the maximum of 150.18° and the rolling angle is less than 10°. At this time, the hydrophobic film presents a micro/nano rough surface with low-surface energy, which have superior hydrophobic properties. The hydrophobic AM60 Mg-alloy has good corrosion resistance, and its corrosion current density is 88.19% lower than that of untreated matrix material, and the corresponding corrosion voltage is 19.72% higher, which significantly improves the corrosion resistance of the AM60 Mg-alloy. At the same time, the treated AM60 Mg-alloy has also good self-cleaning performance to dust and aqueous solution.

Key wordsAM60 Mg-alloy    chemical etching    super-hydrophobic    corrosion resistance    self-cleaning
收稿日期: 2021-04-20     
ZTFLH:  TG17  
基金资助:陕西省自然科学基础研究计划(2019JQ-156);陕西省教育厅重点科研计划(19JS026);商洛市高性能有色金属制备与;加工技术创新团队(SK2019-75);商洛学院博士科研项目(17SKY019)
通讯作者: 代卫丽     E-mail: dweili@126.com
Corresponding author: DAI Weili     E-mail: dweili@126.com
作者简介: 代卫丽,女,1981年生,博士,讲师

引用本文:

代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
Weili DAI, Jinghang WANG, Shuai LUO, Ning DU, Fan LIU, Lidong XU, Jun ZHANG, Yuehong SONG, Yanfeng LIU. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 301-308.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.088      或      https://www.jcscp.org/CN/Y2022/V42/I2/301

图1  AM60表面改性前后的XRD谱
图2  不同处理状态的AM60镁合金的Raman光谱分析
图3  经不同方法表面处理后的AM60镁合金SEM形貌及对应的接触角
图4  硬脂酸浸泡时间对表面接触角的影响
图5  盐酸刻蚀25 min然后硬脂酸浸泡不同时间的试样表面SEM形貌及对应接触角
图6  不同表面的液滴接触角的Cassie模型示意图
图7  未经和经过疏水处理、盐酸刻蚀的AM60镁合金试样在3.5%NaCl溶液中的电化学极化曲线
SampleIcorr / A·cm-2Ecorr / V
SA+HCl(6.518±0.03)×10-9-0.513±0.01
HCl(4.514±0.01)×10-6-0.683±0.02
Bare substrate(5.521±0.01)×10-8-0.639±0.02
表1  未经和经过超疏水处理、盐酸刻蚀的AM60镁合金试样的腐蚀电流密度和腐蚀电位
图8  经3.5%NaCl浸泡之后的AM60镁合金的SEM像
图9  具有疏水表面AM60镁合金对粉尘和溶液的自清洁效果照片
1 Zhou D M, Jiang L, Wang M T, et al. Effects of Ce(NO3)2 concentration and silicate sealing treatment on calcium phosphating film on surface of Mg-Zn-Y-Ca alloy for high speed railway corbel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 849
1 周殿买, 姜磊, 王美婷等. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 849
2 Pan H C, Ren Y P, Fu H, et al. Recent developments in rare-earth free wrought magnesium alloys having high strength: A review [J]. J. Alloy. Compd., 2016, 663: 321
3 Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
4 Liu D F, Li Y G, Wei Y H, et al. Atmospheric corrosion and dynamic analysis of AM60 Mg alloy [J]. Rare Met. Mater. Eng., 2016, 45: 369
4 刘东风, 李永刚, 卫英慧等. AM60镁合金大气腐蚀及动力学分析 [J]. 稀有金属材料与工程, 2016, 45: 369
5 Wang L, Zhang B P, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions [J]. Mater. Des., 2010, 31: 857
6 Liu L, Yu S R. Effect of Gd addition on corrosion behavior of AM60 Magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 185
6 刘丽, 于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 185
7 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys [J]. Electrochim. Acta, 2018, 260: 55
8 Zeng R C, Hu Y, Guan S K, et al. Corrosion of magnesium alloy AZ31: the influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution [J]. Corros. Sci., 2014, 86: 171
9 Jönsson M, Persson D. The influence of the microstructure on the atmospheric corrosion behaviour of magnesium alloys AZ91D and AM50 [J]. Corros. Sci., 2010, 52: 1077
10 Peng L M, Chang J W, Guo X W, et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. J. Appl. Electrochem., 2009, 39: 913
11 Xia X, Davies C H J, Nie J F, et al. Influence of composition and processing on the corrosion of magnesium alloys containing binary and ternary additions of zinc and strontium [J]. Corrosion, 2015, 71: 38
12 Zhu W J, Chen J H, Yan H G, et al. Microstructure and properties of as-cast Mg-4Zn-xGa alloys [J]. Corros. Sci. Prot. Technol., 2019, 31: 590
12 朱伟俊, 陈吉华, 严红革等. 铸态Mg-4Zn-xGa合金的组织与性能研究 [J]. 腐蚀科学与防护技术, 2019, 31: 590
13 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
13 王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
14 Cui X J, Lin X Z, Liu C H, et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy [J]. Corros. Sci., 2015, 90: 402
15 Liu C C, Liang J, Zhou J S, et al. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy [J]. Appl. Surf. Sci., 2015, 343: 133
16 Lu H M. Research on micro-arc oxidation film and electro-chemical corrosion of AM60 magnesium alloy [D]. Beijing: Beijing Jiaotong University, 2019
16 鹿红梅. AM60镁合金微弧氧化膜层及电化学腐蚀性能研究 [D]. 北京: 北京交通大学, 2019
17 Wang H Y, Zhu Y X, Hu Z Y, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties [J]. Chem. Eng. J., 2016, 303: 37
18 Wang Y, Gu Z P, Xin Y, et al. Facile formation of super-hydrophobic nickel coating on magnesium alloy with improved corrosion resistance [J]. Colloid. Surf., 2018, 538A: 500
19 Araghi A, Paydar M H. Electroless deposition of Ni-W-P-B4C nanocomposite coating on AZ91D magnesium alloy and investigation on its properties [J]. Vacuum, 2013, 89: 67
20 Zhu L Q, Song G L. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating [J]. Surf. Coat. Technol., 2006, 200: 2834
21 Elsentriecy H H, Azumi K, Konno H. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy [J]. Surf. Coat. Technol., 2007, 202: 532
22 Wang H L, Liu L Y, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2013, 286: 319
23 Zucchi F, Frignani A, Grassi V, et al. Stannate and permanganate conversion coatings on AZ31 magnesium alloy [J]. Corros. Sci., 2007, 49(12): 4542
24 Rajabalizadeh Z, Seifzadeh D. The effect of copper ion on microstructure, plating rate and anticorrosive performance of electroless Ni-P coating on AZ61 magnesium alloy [J]. Prot. Met. Phys. Chem. Surf., 2014, 50: 516
25 Zhang Y F, Blawert C, Tang S W, et al. Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy [J]. Corros. Sci., 2016, 112: 483
26 Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance [J]. Nat. Mater., 2018, 17: 355
27 Zhao L, Liu Q, Gao R, et al. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance [J]. Corros. Sci., 2014, 80: 177
28 Wang Z M. Construction and characterization of superhydrophobic surfaces of three transitional metals on AZ31 magnesium alloy surface [D]. Harbin: Harbin Engineering University, 2018
28 王梓名. AZ31镁合金表面三种过渡金属超疏水表面的构筑及其性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018
29 Zhang H Y, Cao J Y, Feng Y F, et al. Preparation and corrosion performance of Ni-P/NiO superhydrophobic surface film on AZ31 Mg-alloy [J]. Corros. Sci. Prot. Technol., 2019, 31: 411
29 张海永, 曹京宜, 冯亚菲等. AZ31镁合金Ni-P/NiO耐腐蚀超疏水表面的制备及其性能研究 [J]. 腐蚀科学与防护技术, 2019, 31: 411
30 Peng H Q, Luo Z J, Li K Y, et al. Study on preparation process and self-cleaning performance of superhydrophobic aluminum surfaces fabricated by hydrochloric acid etching [J]. Appl. Chem. Ind., 2019, 48: 2900
30 彭华乔, 罗振军, 李开宇等. 盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究 [J]. 应用化工, 2019, 48: 2900
31 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
31 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
32 Luo M, Guan P, Liu W H, et al. Raman spectrometry of several saturated fatty acids and their salts [J]. Spectrosc. Spect. Anal., 2006, 26: 2030
32 罗曼, 关平, 刘文汇等. 几种饱和脂肪酸及其盐的拉曼光谱研究 [J]. 光谱学与光谱分析, 2006, 26: 2030
33 Zhang J Y. Researches on preparation, deformation and superhydrophobic modification of biomedical degradable rare-earth magnesium alloys [D]. Guangzhou: South China University of Technology, 2017
33 张俊逸. 生物医用可降解稀土镁合金的制备、成形及超疏水改性研究 [D]. 广州: 华南理工大学, 2017
34 Huang Y P, Zhang Y F, Yu X Q, et al. Fabrication of superhydrophobic surface on magnesium alloy and corrosion resistance analysis [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2012, 42: 915
34 黄艳萍, 张友法, 余新泉等. 镁合金表面超疏水性的构建及耐腐蚀性分析 [J]. 东南大学学报 (自然科学版), 2012, 42: 915
35 Xu L Q, Wan X F, Dong J, et al. Corrosion resistance of superhydrophobic structure on magnesium alloy surface prepared by hydrochloric acid-laser composite etching and SA modification [J]. Mater. Mech. Eng., 2019, 43(10): 6
35 徐雷秋, 万晓峰, 董菁等. 盐酸-激光复合刻蚀+SA修饰制备镁合金表面超疏水结构的耐腐蚀性能 [J]. 机械工程材料, 2019, 43(10): 6
36 Li M, Fu H, Liu Z G, et al. Characterization of CeO2 modified by stearic acid and the modification mechanism [J]. Chin. Rare Earths, 2010, 31(3): 11
36 李梅, 付海, 柳召刚等. 硬脂酸改性氧化铈的效果表征与机理研究 [J]. 稀土, 2010, 31(3): 11
37 Ouyang Y J, Hu T, Wang J Y, et al. Electrochemical deposition and characterization of layered double hydroxide film on magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 453
37 欧阳跃军, 胡婷, 王佳音等. 镁合金表面层状双氢氧化物的电化学沉积和表征 [J]. 中国腐蚀与防护学报, 2019, 39: 453
38 Li Y F, Yu Z J, Yu Y F, et al. Fabrication of super-hydrophobic surfaces on aluminum alloy [J]. J. Chem. Eng. Chin. Univ., 2008, 22: 6
38 李艳峰, 于志家, 于跃飞等. 铝合金基体上超疏水表面的制备 [J]. 高校化学工程学报, 2008, 22: 6
[1] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[2] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[3] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[4] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[5] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[6] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[7] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[8] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[9] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[10] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[11] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[12] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[14] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[15] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.