Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 297-304    DOI: 10.11902/1005.4537.2014.115
  本期目录 | 过刊浏览 |
混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应
冯丽娟1,赵康文2,杨怀玉1(),唐囡2,王福会1,上官帖2
2. 国网江西省电力科学研究院 南昌 330096
Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution
Lijuan FENG1,Kangwen ZHAO2,Huaiyu YANG1(),Nan TANG2,Fuhui WANG1,Tie SHANGGUAN2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
全文: PDF(2783 KB)   HTML
摘要: 

在含3.5%NaCl饱和 Ca(OH)2溶液中,利用线性极化、动电位扫描和电化学阻抗技术,研究了一种咪唑啉衍生物,即1-(N N′-2-羟基乙撑醚-氨乙基)-2-硬植酸咪唑啉 (HASI) 与四乙烯五胺 (TEPA) 复配缓蚀剂对钢筋的缓蚀性能及二者间的缓蚀协同作用,通过分子动力学模拟对HASI,TEPA和不同比例复配物在Fe表面的吸附行为进行了探讨。结果表明:与空白溶液相比,添加缓蚀剂后钢筋腐蚀电流密度下降,耐Cl-侵蚀性能增强。随复配物中HASI含量的增加,缓蚀效率升高,钢筋自腐蚀电位负移,且钢筋电极钝化区间增大,表明复配化合物对碱性Cl-溶液中钢筋的腐蚀具有很好的抑制作用,HASI与TEPA间具有明显的缓蚀协同效应。动力学模拟结果表明,HASI与TEPA可同时在Fe表面发生吸附,并形成致密的吸附保护膜,有效阻碍溶液中侵蚀性物质与金属基体的接触,进而抑制钢筋的腐蚀。

关键词 钢筋腐蚀缓蚀剂协同效应分子动力学模拟    
Abstract

Inhibition performance and synergistic effect of an imidazoline derivative, namely 1-[N,N-bis(hydroxylethylether)-aminoethyl]-2-stearicimidazoline (HASI) with tetraethylenepentamine (TEPA) on the corrosion inhibition of steel rebar in an artificial concrete pore solution containing 3.5%NaCl were investigated using linear polarization, potentialdynamic polarization and electroch-emical impedance spectroscopy (EIS) techniques, while molecular dynamics (MD) simulation was employed to explore the co-adsorption behavior of the composite inhibitors on the metallic iron surface. Results indicate that after the addition of inhibitors, the corrosion current density of steel rebar was reduced and the corrosion resistance of steel rebar was enhanced. With increasing content of HASI in the composite inhibitors, the inhibition efficiency gradually increased, the corrosion potential shifted significantly to negative, and therewith a more positive pitting potential and a wide passive region were observed in comparison with that in the blank solution, which reveal that the chloride-induced corrosion on steel rebar was effectively retarded by the composite inhibitor, in other words, HASI and TEPA exhibited a good synergistic effect on the corrosion inhibition of steel rebar in the artificial concrete pore solution. MD results show that molecules of HASI and TEPA could simultaneously be adsorbed on the metallic iron surface to form a more compact protective film and consequently became a barrier to hinder the access of aggressive species in the corrosive solution to the metal surface, thereby to effectively inhibit the corrosion of steel rebar.

Key wordssteel rebar corrosion    corrosion inhibitor    synergistic effect    molecular dynamics simulation
    
基金资助:国家自然科学基金项目 (51071161) 和输变电设备防腐材料开发及应用关键技术研究项目 (521820130014) 资助

引用本文:

冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
Lijuan FENG, Kangwen ZHAO, Huaiyu YANG, Nan TANG, Fuhui WANG, Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 297-304.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.115      或      https://www.jcscp.org/CN/Y2015/V35/I4/297

Inhibitor Mole ratio Rp / kΩcm2 IE / %
Blank --- 4.8 ---
HASI --- 11.3 57.5
TEPA --- 6.5 26.2
HASI/TEPA 1∶3 15.9 69.8
HASI/TEPA 1∶1 19.3 75.1
HASI/TEPA 3∶1 33.5 85.7
表1  在3.5%NaCl饱和Ca(OH)2溶液中由线性极化得到的钢筋电极电化学参数
图1  空白和添加不同缓蚀剂时钢筋电极在含3.5%NaCl 饱和Ca(OH)2溶液中的极化行为
Inhibitor Mole ratio Ecorr / mV Icorr / μAcm-2 -βc / mVdec-1 βa / mVdec-1 Epit-Ecorr / mV
Blank --- -516 5.1 113 195 304
HASI --- -515 1.9 113 190 468
TEPA --- -503 3.6 119 195 420
HASI/TEPA 1∶3 -496 1.6 120 194 376
HASI/TEPA 1∶1 -608 1.1 115 190 409
HASI/TEPA 3∶1 -637 0.7 112 226 595
表2  3.5%NaCl饱和Ca(OH)2溶液中由动电位极化得到的钢筋电极电化学参数
图2  空白和添加不同缓蚀剂时钢筋电极在含3.5%NaCl饱和Ca(OH)2溶液中的阻抗行为
Inhibitor Mole ratio Rs Ωcm2 CPE1-Y0 μΩ-1sncm-2 n1 Rct kΩcm2 CPE2-Y0 μΩ-1sncm-2 n2 Rf kΩcm2 η %
Blank --- 11.6 39 0.90 1.5 302.3 0.70 3.3 ---
HASI --- 13.3 29.3 0.85 3.6 223.7 0.49 9.4 58.3
TEPA --- 10.9 32.8 0.90 2.3 257.6 0.62 4.5 34.8
HASI/TEPA 1:3 11 28.8 0.91 4.9 205.8 0.57 14.3 69.4
HASI/TEPA 1:1 13.9 27.1 0.84 6.2 198 0.76 18.7 75.8
HASI/TEPA 3:1 12.6 26.2 0.87 9.8 166.1 0.96 23.1 84.7
表 3  钢筋电极在含3.5%NaCl饱和Ca(OH)2溶液中的EIS参数
图3  模拟等效电路图
图4  空白和添加0.2 mmol/L不同缓蚀剂时钢筋试样在含3.5%NaCl饱和Ca(OH)2溶液中浸泡28 d后的表面形貌
图5  不同缓蚀剂分子在Fe(100) 表面的平衡吸附构型
Inhibitor Mole ratio Binding energy / kJmol-1
HASI 100% 682.6
TEPA 100% 421.8
HASI/TEPA 1∶3 702.6
HASI/TEPA 1∶1 717.9
HASI/TEPA 3∶1 728.3
表4  不同缓蚀剂分子在 Fe(100) 表面的结合能
[1] Ke W. Current investigation into the corrosion cost in China[J]. Total Corros. Control, 2003, 17(1): 1 (柯伟. 中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17(1): 1)
[2] S?ylev T A, Richardson M G. Corrosion inhibitors for steel in concrete: State-of-the-art report[J]. Constr. Build. Mater., 2008, 22(4): 609
[3] Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures[J]. Cem. Concr. Res., 2006, 36: 536
[4] Saravanan K, Sathiyanarayanan S, Muralidharan S, et al. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment[J]. Prog. Org. Coat., 2007, 59(2): 160
[5] Hong N F. Development and use of steel bar inhibitor[J]. Indus. Constr., 2005, 35(6): 68 (洪乃丰. 钢筋阻锈剂的发展与应用[J]. 工业建筑, 2005, 35(6): 68)
[6] Criado M, Monticelli C, Fajardo S, et al. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar[J]. Constr. Build. Mater., 2012, 35: 30
[7] Yang R J, Guo Y, Tang F M, et al. Effect of sodium D-gluconate-based inhibitor in preventing corrosion of reinforcing steel in simulated concrete pore solutions[J]. Acta Phys.-Chim. Sin., 2012, 28(8): 1923 (杨榕杰, 郭亚, 唐方苗等. 模拟混凝土孔隙液中D-葡萄糖酸钠复合缓蚀剂对钢筋的阻锈作用[J]. 物理化学学报, 2012, 28(8): 1923)
[8] Feng L J, Yang H Y, Wang F H. Effect of an imidazoline derivative on the protection performance of oxide film formed on carbon steel in saturated Ca(OH)2 solution[J]. Int. J. Electrochem. Sci., 2012, 7: 4064
[9] Feng L J, Yang H Y, Wang F H. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5%NaCl saturated Ca(OH)2 solution[J]. Electrochim. Acta, 2011, 58: 427
[10] Feng L J, Yang H Y, Wang F H. The Inhibition Behavior of Organic Amines for the Steel Rebar in Saturated Ca(OH)2 Solutions Containing 5%NaCl [M]. Beijing: Scientific and Technical Documents Publishing House, 2009 (冯丽娟,杨怀玉,王福会. 高含氯离子混凝土模拟液中有机胺对钢筋的缓蚀行为[M]. 北京: 科学技术文献出版社, 2009)
[11] Dong Z H, Zhu T, Shi W, et al. Inhibition of ethyleneamine on the pitting corrosion of rebar in a synthetic carbonated concrete pore solution[J]. Acta Phys.-Chim. Sin., 2011, 27(4): 905 (董泽华, 朱涛, 石维等. 烯胺阻锈剂对钢筋在模拟碳化混凝土孔隙液中的点蚀抑制[J]. 物理化学学报, 2011, 27(4): 905)
[12] Machnikova E, Whitmire K H, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives[J]. Electrochim. Acta, 2008, 53: 6024
[13] Martinez S, Valek L, Stipanovi? O I. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle[J]. J. Electrochem. Soc., 2007, 154(11): C671
[14] Valek L, Martinez S, Mikulic D, et al. The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions[J]. Corros. Sci., 2008, 50(9): 2705
[15] Flis J, Zakroczymski T. Impedance study of reinforcing steel in simulated pore solution with tannin[J]. J. Electrochem. Soc., 1996, 143(8): 2458
[16] Ozcan M, Dehri I, Erbil M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure[J]. Appl. Surf. Sci., 2004, 236: 155
[17] Valcarce M B, Vazquez M. Steel rebar passivity examined in akaline solutions[J]. Electrochim. Acta, 2008, 53(15): 5007
[18] Monticelli C, Frignani A, Trabanelli G. Corrosion inhibitor of steel in chloride-containing alkaline solutions[J]. J. Appl. Electrochem., 2002, 32(5): 527
[19] Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions[J]. Corros. Sci., 2010, 52: 1268
[20] x Gomez B, Likhanova N V, Aguilar M A D, et al. Theoretical study of a new group of corrosion inhibitors[J]. J. Phys. Chem., 2005, 109(39)A: 8950
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[12] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.