|
|
16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究 |
邢云颖, 刘智勇( ), 董超芳, 李晓刚 |
北京科技大学腐蚀与防护中心 北京 100083 |
|
Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments |
XING Yunying, LIU Zhiyong( ), DONG Chaofang, LI Xiaogang |
Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
邢云颖, 刘智勇, 董超芳, 李晓刚. 16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 59-64.
Yunying XING,
Zhiyong LIU,
Chaofang DONG,
Xiaogang LI.
Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 59-64.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2013.050
或
https://www.jcscp.org/CN/Y2014/V34/I1/59
|
[1] |
Fu C H, Si Y X. Analysis of root causes of equipment cracking in FCCU regenerator system and counter measures[J]. Corros. Prot. Petrochem. Ind., 2010, 27(6): 31-64
|
[1] |
(付春辉, 司元祥. 催化裂化装置再生系统应力腐蚀开裂原因[J]. 石油化工腐蚀与防护, 2010, 27(6): 31-64)
|
[2] |
Parkins R N. Mechanical aspect of stress corrosion cracking of carbon steels in petroleum refining industry [A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 526-533
|
[3] |
Gu Y Z. Prevention of stress corrosion cracking (SCC) of equipment in FCCU regeneration system[J]. Corros. Prot. Petrochem. Ind., 2010, 27(5): 17-19
|
[3] |
(顾月章. 催化裂化再生系统应力腐蚀开裂的预防[J]. 石油化工腐蚀与防护, 2010, 27(5): 17-19)
|
[4] |
Galvele J R. Recent developments in the surface-mobility stress-corrosion-cracking mechanism[J]. Electrochim. Acta, 2000, 45(21): 3537-3541
|
[5] |
Pollard R E. Symposium stress corrosion cracking of metals[J]. ASTM, 1944: 443-450
|
[6] |
Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 63-65
|
[6] |
(张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展[J]. 腐蚀科学与防护技术, 2009, 21(1): 63-65)
|
[7] |
Wu Y S. SCC diagram for low alloy steel-nitrate aqueous solution system[J]. J. Univ. Sci. Technol. Beijing, 1990, 12(2): 131-136
|
[7] |
(吴荫顺. 低合金钢-硝酸盐溶液体系SCC图[J]. 北京科技大学学报, 1990, 12(2): 131-136)
|
[8] |
Parkins R N. Mechanism and characteristic of stress corrosion cracking[A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 531-542
|
[9] |
Du A H, Long J M, Pei Z H, et al. Investigation of stress corrosion cracking of 7xxx series aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2008, 28(4): 251-256
|
[9] |
(杜爱华, 龙晋明, 裴中和等. 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256)
|
[10] |
Rossenhain G D, Lockington N A. Research of stress corrosion cracking[J]. Corrosion, 1990, 5: 167-169
|
[11] |
Meng Q, Yan H, Huang W, et al. Corrosion and protection of catalytic cracking unit[J]. Fine Chem. Intermed., 2011, 41(1): 8-10
|
[11] |
(孟邱, 闫慧, 黄炜等. 催化裂化装置的腐蚀与防护[J]. 精细化工中间体, 2011, 41(1): 8-10)
|
[12] |
Li X G, Chen H, Dong C F. Thermal healing of hydrogen attacked cracks in steels [A]. The 2nd China International Corrosion Control Conference [C]. Beijing, 2002: 41-49
|
[13] |
Zhou Z H. Deterrents to long-period operation of catalytic cracking units and solution[J]. Sino-Global. Energy, 2012, 17(6): 73-77
|
[13] |
(周志航. 催化裂化装置长周期运行的问题及对策[J]. 中外能源, 2012, 17(6): 73-77)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|