Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 59-64    DOI: 10.11902/1005.4537.2013.050
  研究论文 本期目录 | 过刊浏览 |
16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究
邢云颖 刘智勇 董超芳 李晓刚
北京科技大学腐蚀与防护中心 北京 100083
Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments
XING Yunying, LIU Zhiyong, DONG Chaofang, LI Xiaogang
Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3250 KB)   HTML
摘要: 通过U形试样应力腐蚀实验、电化学极化曲线等方法,在模拟催化裂化再生器环境条件下,研究了HNO3-H2SO4-H2O体系中16MnR钢及其焊缝的应力腐蚀行为。结果表明:16MnR钢焊接接头在不同实验条件下均比基材更易产生硝酸盐应力腐蚀开裂,其机理主要是阳极溶解;引入硫酸根和降低pH值均能破坏16MnR钢的保护膜,增大其焊接接头的应力腐蚀敏感性;当溶液的pH值降低至2以下时,材料处于活化状态,发生严重的均匀腐蚀。
关键词 催化裂化露点16MnR钢焊缝应力腐蚀    
Abstract:The stress corrosion behavior of the weld seam and base metal of 16MnR steel in solution of HNO3-H2SO4-H2O, one of the typical environments of FCCU regenerator, was investigated using U-bend specimen immersion test and electrochemical polarization curves. The results show that the weld seam of 16MnR is more sensitive to nitrate stress corrosion cracking than base metal, its mechanism is anodic dissolution. Both the introduction of sulfate and the slightly reduction of pH can destroy the protective film on 16MnR steel, and increase the corrosion susceptibility of its weld seam. However, when the pH of solution is less than 2, the material is in active state, resulting in a serious of uniform corrosion. Besides the effective methods to slow down the stress corrosion of materials in catalytic cracking regenerator are analyzed in this article.
Key wordscatalytic cracking    dew-point    16MnR    weld seam    stress corrosion
收稿日期: 2013-06-06     
ZTFLH:  TG172.6  
基金资助:国家科技支撑计划项目 (2011BAK06B01-01-02) 和中央高校基本科研业务费专项资金项目 (FRF-TP-12-148A) 资助
通讯作者: 刘智勇,E-mail:liuzhiyong7804@126.com   
作者简介: 邢云颖,1988年生,女,硕士生,研究方向为材料的腐蚀与防护

引用本文:

邢云颖, 刘智勇, 董超芳, 李晓刚. 16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 59-64.
XING Yunying, LIU Zhiyong, DONG Chaofang, LI Xiaogang. Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 59-64.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.050      或      https://www.jcscp.org/CN/Y2014/V34/I1/59

[1] Fu C H, Si Y X. Analysis of root causes of equipment cracking in FCCU regenerator system and counter measures [J]. Corros. Prot. Petrochem. Ind., 2010, 27(6): 31-64
(付春辉, 司元祥. 催化裂化装置再生系统应力腐蚀开裂原因 [J]. 石油化工腐蚀与防护, 2010, 27(6): 31-64)
[2] Parkins R N. Mechanical aspect of stress corrosion cracking of carbon steels in petroleum refining industry [A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 526-533
[3] Gu Y Z. Prevention of stress corrosion cracking (SCC) of equipment
in FCCU regeneration system [J]. Corros. Prot. Petrochem. Ind., 2010, 27(5): 17-19
(顾月章. 催化裂化再生系统应力腐蚀开裂的预防 [J]. 石油化工腐蚀与防护, 2010, 27(5): 17-19)
[4] Galvele J R. Recent developments in the surface-mobility stress-corrosion-cracking mechanism [J]. Electrochim. Acta, 2000, 45(21): 3537-3541
[5] Pollard R E. Symposium stress corrosion cracking of metals [J]. ASTM, 1944: 443-450
[6] Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 63-65
(张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展 [J]. 腐蚀科学与防护技术, 2009, 21(1): 63-65)
[7] Wu Y S. SCC diagram for low alloy steel-nitrate aqueous solution system [J]. J. Univ. Sci. Technol. Beijing, 1990, 12(2): 131-136
(吴荫顺. 低合金钢-硝酸盐溶液体系SCC图 [J]. 北京科技大学学报, 1990, 12(2): 131-136)
[8] Parkins R N. Mechanism and characteristic of stress corrosion crac-
king [A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 531-542
[9] Du A H, Long J M, Pei Z H, et al. Investigation of stress corrosion cracking of 7xxx series aluminum alloys [J]. J. Chin. Soc. Corros. Prot., 2008, 28(4): 251-256
(杜爱华, 龙晋明, 裴中和等. 高强铝合金应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256)
[10] Rossenhain G D, Lockington N A. Research of stress corrosion cracking [J]. Corrosion, 1990, 5: 167-169
[11] Meng Q, Yan H, Huang W, et al. Corrosion and protection of catalytic cracking unit [J]. Fine Chem. Intermed., 2011, 41(1): 8-10
(孟邱, 闫慧, 黄炜等. 催化裂化装置的腐蚀与防护 [J]. 精细化工中间体, 2011, 41(1): 8-10)
[12] Li X G, Chen H, Dong C F. Thermal healing of hydrogen attacked cracks in steels [A]. The 2nd China International Corrosion Control Conference [C]. Beijing, 2002: 41-49
[13] Zhou Z H. Deterrents to long-period operation of catalytic cracking units and solution [J]. Sino-Global. Energy, 2012, 17(6): 73-77
(周志航. 催化裂化装置长周期运行的问题及对策 [J]. 中外能源, 2012, 17(6): 73-77)
[1] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] 刘志峰,朱志平,石纯,黄赵鑫. 载流法制备硫酸露点腐蚀模拟气体的试验研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[3] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[4] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[5] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[6] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[7] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[8] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[9] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[10] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[11] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[12] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[13] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[14] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.